Please use this identifier to cite or link to this item:
標題: 以二維數學模型和三維數學模型模擬橢圓與球形細胞內的擴散機制
The Mathematical Two- and Three-Dimensional Model Simulating Intracellular Diffusion in Oval Cells and Spherical Cells
作者: 賴昱維
Lai, Yu-Wei
關鍵字: apparent diffusion coefficient
steric hindrance
binding effect
出版社: 化學工程學系所
引用: 1. Nelson, D.L., M. M., Cox, “Leninger Principles of Biochemistry.” (2005) 2. Fushimi, K., and A. S. Verkman, “Low Viscosity in the Aqueous Domain of Cell Cytoplasm Measured by Picosecond Polarization Microscopy.” J. Cell Biol. 112, 719-725 (1991) 3. Jacobson, K., and J. Wojcieszyn, “The Translational Mobility of Substances within the Cytoplasmic Matrix.” Proc. Natl. Acad. Sci. 81, 6747-6751 (1984) 4. Luby-Phelps, k., D. L. Taylor, and F. Lanni, “Probing the Structure of Cytoplasm.” J. Cell Biol. 102, 2015-2022 (1986) 5. Luby-Phelps, K., P. E. Castle, d. L. Taylor, and F. Lanni, “Hindered Diffusion of Inert Tracer Particles in the Cytoplasm of Mouse 3T3 Fibroblasts.” Proc. Natl. Acad. Sci. USA 84, 4910-4913 (1987) 6. Luby-Phelps, K., F. Lanni, and D. L. Taylor, “The Submicroscopic Properties of Cytoplasm as a Determinant of Cellular Function.” Ann. Rev. Biophys. Biophys. Chem. 17, 369-396 (1988) 7. Maughan, D., and C. Lord, “Protein Diffusivities in Skinned Frog Skeletal Muscle Fiber.” Adv. Exp. Med. Biol. 299, 75-84 (1988) 8. Nakase, T., Christian C. G. Naus, “Gap Junctions and Neurological Disorders of the Central Nervous System.” Bioch. et Bioph. Acta 1662(1-2), 149-158 (2004) 9. Nitsche, J. M., H.-C. Chang, P. A. Weber and B. J. Nicholson, “A Transient diffusion Model Yields Unitary Gap Junctional Permeabilities from Images of Cell to Cell Fluorescent Dye Transfer Between Xenopus Oocytes.” Bioph. J. 86, 2058-2077 (2004) 10. Odde, D. J., “Estimation of the Diffusion-Limited Rate of Microtubule Assembly.” Biophy. J. 73, 88-96 (1997) 11. Papadopoulos, S., K. D. Jurgens, and G. Gros, “Protein Diffusion in Living Skeletal Muscle Fibers: Dependence on Protein Size, Fiber Type, and Contraction.” Biophy. J. 79, 2084-2094 (2000) 12. Pickard, W. F., “The Role of Cytoplasmic Streaming in Symplastic Transport.” Plant, Cell and Environment 26, 1-15 (2003) 13. Verkman, A. S., “Solute and Macromolecule Diffusion in Cellular Aqueous Compartments.” Trends Biochem. Sci. 27, 27-33 (2002) 14. Wojcieszyn, J. W., R. A. Schlegel, E. S. Wu, and K. A. Jacobson, “Diffusion of Injected Macromolecules within the Cytoplasm of Living Cells.” Proc. Natl. Acad. Sci. USA 78, 4407-4410 (1981) 15. Edmond, E., A.G. Ogston, “An approach to the study of phase separation in ternary aqueous systems.” J. Biol. 109, 569–576. (1968) 16. Minton, A. P., “The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media.”J.Biol.chem.276, 10577-10580 (2001) 17. Kao, H. P., J. R. Abney, and A. S. Verkman, “Determinants of the Translational Mobility of a Small Solute in Cell Cytoplasm.” J. Cell. Biol. 120, 175-184 (1993) 18. Lukacs, G. L., P. Haggie, O. seksek, D. Lechardeur, N. Freedman, and A. S. Verkman, “Size-dependent DNA Mobility in Cytoplasm and Nucleus.” J. Biol. Chem. 275, 1625-1629 (2000) 19. Chang, H.-C, Y.-C Lin, C.-T Kuo, “A two-dimensional diffusion model quantifying intracellular transport with independent factors accounting for cytosol viscosity, binding, and steric hindrance” J. Biol. Sci. 41, 217–227 (2008) 20. Molham, A.-H., “ Macromolecular crowding and its role as intracellular signalling of cell volume regulation” J. Cell Biol. 33, 844–864 (2001) 21. Luby-Phelps, K., “Cytoarchitecture and Physical Properties of Cytoplasm: Volume, Viscosity, Diffusion, Intracellular Surface Area.” (2000) 22. 林彥菖,中興大學化工碩士論文(2007) 23. 鄭培琳,中興大學化工碩士論文(2005) 24. 郭哲廷,中興大學化工碩士論文(2009) 25. Ellis, R. J.,“Macromolecular crowding: an important but neglected aspect of the intracellular environment.” Biol. Sci. 11, 114–119 (2001) 26. Giddings, J. C., E. Kucera, P. Russella, N. Myer, “Statistical Theory for the Equilibrium Distribution of Rigid Molecules in Inert Porous Networks. Exclusion Chromatography” (1968) 27. Bhattacharjee, S., A. Sharma, “Lifsitz-van der Waals Energy of Spherical Particles in Cylindrical Pores” (1994) 28. Suzuki, T., F. K. Mostofi, “Intrami tachondrial fiamentous bodies in the thick limb of henle of the rat kidney” J. cell Biol. 25, 293 (1965) 29. Weber, P, A., H-C. Chang, Y. K. E, Spaeth, Z. J. Nitsche, Y. B. Nicholson, “The Permeability of Gap Junction Channels to Probes of Different Size Is Dependent on Connexin Composition and Permeant-Pore Affinities” J. Biol. 87, 958–973 (2004) 30. Ciechanover, A., R. B. Saadon, “N-terminal ubiquitination: more protein substrates join in” J. cell Biol. 14, 3-7 (2004) 31. Simoni, R. D., R. L. Hill, M. Vaughan, “The Discovery of Insulin: the Work of Frederick Banting and Charles Best” Biol. Chem. 57, 709-723 (1921)
摘要: 細胞內的物質傳送在生物體中扮演很重要的角色。液相的細胞質是擁擠而非稀薄,而細胞內大分子的擴散系數和分佈係數都受到立體障礙和結合效應影響,是一種不可忽略的限制。我們利用表觀擴散系數(ADC)來囊括所有有關於細胞質內的阻礙。有關於此類的問題我們這裡發展兩種數學模型來量化阻礙的因子,以二維數學模型來模擬肌肉細胞內胞器的影響,利用不同胞器的大小、多寡、和位置來量化胞器所造成的幾何效應,再利用三維數學模型來量化小鼠卵母細胞內立體障礙和結合效應因子。
Intercellular mass molecule transport plays a critical role in biological function. It is clear that the aqueous phase of the cytoplasm is crowded rather than dilute, and that the diffusion- and partitioning coefficients of macromolecules within cytoplasm are highly restricted by steric hindrance as well as binding interactions. Cytoplasmic mobility is characterized by apparent diffusion coefficient(ADC), which includes all the diffusion resistances, we developed a two-dimensional mathematical model regulating the parameterizing geometric factors to describe intracellular diffusion within muscle cells, and a three dimensional mathematical model to isolate the factors of steric hindrance and binding effect within mouse oocytes.
其他識別: U0005-1202201012300300
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.