Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3735
標題: 具有不同官能基之熱固性樹脂與其性質分析
Preparation and Characterization of Thermosetting Resins Derived from Various Functional Groups
作者: 丁學輝
Ding, Shiue-Huei
關鍵字: flame-retarding
難燃
epoxy resin
benzoxazine
phosphor
環氧樹脂
苯并
出版社: 化學工程學系所
引用: 參考文獻 1. 賴耿陽譯著,”環氧樹脂應用實務”,復漢出版社 (1996) 2. 謝正悅,林慶炫,王春山,科學發展月刊,第28卷第11期,八十九年九月。 3. Morvan, F.; Broke J,C. J. Appl. Polym. Sci. 1999, 11, 1855-1868. 4. Kourtides, D.A.; Parker, J.A.; Grants, T.W.; Bilow, N.; Hsu, M.T. Adhesive for Industries and Technology Conference, California, June 1980. 5. Wang, T.S.; Yeh, J.F.; Shau, M.D. J. Appl.Polym. Sci. 1996, 59, 215-225 6. Liu, Y.L. J. Polym. Sci: Part A: Polym. Chem. 2002, 40, 359-368. 7. Tobisawa, A. Jpn. Patent 10-273520, 1998. 8. Liu Y. L. Polymer 2001, 42, 3445-3454. 9. Lin, C. H.; Lin, T. L.; Chang, S. L.; Dai, S. A.; Cheng, R. J.; Hwang, K. Y.; Tu, A. P.; Su, W. C. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7898-7912 10. Liu, Y.L.; Hsiue, G.H.; Chiu, Y.S. J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 565-574 11. Sponto’ N, M.; Ronda, J.C.; Galia`, M.; Cadiz, V. J. Polym. Sci. : Part A: Polym. Chem. 2007, 45, 2142-2151. 12. Cho, C. S.; Chen, L.W.; Chiu, Y. S. Polymer Bulletin 1998, 41, 45-52 13. Holly, F.W.; Cope, A.C. J. Am. Chem. Soc. 1944, 66,1875–1879. 14. Burke, W. J. J. Am. Chem. Soc., 1949, 71, 609-612 15. Burke, W. J.;Bishop, J. L.;Mortense Glennie, E. L.;Bauer, W. N.;Jr. J. Org.Chem., 1965, 30, 3423-3427 16. Morgan, A. B.;Tour, J. M. Macromolecules 1998, 31, 2857-2865 17. Ellzey, K. A.; Ranganathan T.; Zilberman, J.; Coughlin, E. B.; Farris, R. J.; Emrick, T. Macromolecules 2006, 39, 3553-3558. 18. Liu, Y. L. J. Polym. Sci. Part A: Polym Chem. 2002, 40, 359. 19. Allcock, H. R.; Hartle, T. J.; Taylor, J. P.; Sunderland, N. J. Macromolecules 2001, 34, 3896-3904. 20. Lligadas, G.; Ronda, J. C.; Galià, M.; Càdiz, V. J. Polym. Sci. Part A: Polym Chem., 2006, 44, 5630-5644. 21. Hergenrother, P. M.; Thompson, C. M.; Smith, Jr J. G.; Connell, J. W.; Hinkley, J. A.; Lyon, R. E.; Moulton, R. Polymer 2005, 46, 5012-5024. 22. Hoffmann, T.; Pospiech, D.; Ha¨ußler, L.; Komber, H.; Voigt, D.; Harnisch, G.; Kollann, C.; Ciesielski, M.; Doring, M.; Perez-Graterol, R.; Sandler, J. ; Altstadt, V. Macromol. Chem. Phys. 2005, 206, 423-431. 23. Braun, U.; Knoll, U. ; Schartel, B.; Hoffmann, T.; Pospiech, D.; Artner, J.; Ciesielski, M.; Doring, M.; Perez-Graterol, R.; Sandler, J. ; Altstadt, V. Macromol. Chem. Phys. 2006, 207, 1501-1514. 25. Agig, T.; Takeichi, T. Macromolecules 2001, 34, 7257-7263 26. Agig, T.; Takeichi, T. Macromolecules 2003, 36, 6010-6017 27. Brunovska, Z.; Ishida, H. J. Appl. Polym. Sci. 1999, 73, 2937-2949 28. Ishida, H.; Ohba, S. Polymer 2005, 46, 5588-5595. 29. Choi, S. W.; Ohba, S.; Brunovska, Z.; Hemvichian, K.; Ishida, H. Polym. Degrad. Stab. 2006, 91, 1166 30. Kimura, H.; Murata, Y.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda, A. J. Appl. Polym. Sci. 1999, 74, 2266-2273 31. Su, Y. C.; Chang, F. C. Polymer 2003, 44, 7989-7996 32. Low, H. Y.; Ishida, H. Polymer, 1999, 40, 4365-4376. 33. Kim, H. J.; Brunovska, Z.; Ishida, H. Polymer 1999, 40, 1815-1822 34. Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda A. J. Appl. Polym. Sci. 1998, 68, 1903-1910. 35. Espinosa, M. A.; Cadiz, V.;Galia, M. Polymer 2004, 45, 6103. 36. Espinosa, M. A.;Cadiz, V.;Galia, M. J Polymer Sci Part A : Polym Chem 2004, 42, 332. 37. Ishida, H.;Allen, D. J. Polymer 1996, 37, 4487-4495 38. Agag T.; Takechi, T. High Perform Polym 2002, 14, 115-132 39. Ishida, H.; Rodriguez, Y. J. Appl. Polym. Sci., 1995, 58, 1751-1760. 40. Espinosa, M. A.; Cadiz, V.; Galia, M. J. Polym. Sci.: Part A: Polym. Chem. 2004, 42, 279. 41. Espinosa, M. A. ; Ca´diz, V.; Galia`, M. J. Appl. Polym. Sci., 2003, 90, 470. 42. Dunkers, J.; Ishida, H. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 1913-1921. 43. Takeichi, T.; Guo Y.; Rimdusit, S. Polymer 2005, 46, 4909-4916. 44. Lin, C.H.; Lin, H.T.; Chang, S.L.; Hwang, H.J.; Hua, Y.M.; Taso, Y.R.; Su, W.C. Polymer 2009, 50, 2264-2272 45. Kimura, H.; Matsumoto, A.; Hasegwa, K.; Ohtsuka, K.; Fukuda, A. J. Appl. Polym. Sci. 1998,68,3423-3427 46. Kissinger, H. E. Anal. Chem., 1957, 29, 1702-1706 47. Ozawa, T. Bull. Chem. Soc. Jpn.1965, 38, 1881-1886 48. Lin, C.H. ; Yang, K.Z.; Leu, T.S.; Lin, C.H.; Sie, J.W. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 3487-3502 49. Liu, Y.L.; Hsiu, G.H.; Lee, R.H.; Chiu, Y.S. J. Appl. Polym. Sci. 1997, 63, 895-901 50. Liaw, D.J. J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 2365-2369 51 . Wang, C. S.; Lin, C.H. J. Appl. Polym. Sci. 2000, 78, 228-235 52. Wang, C. S.; Lin, C.H. J. Appl. Polym. Sci. 2000, 75, 429-436
摘要: 摘要 Part I 我們基於實驗室所合成的 phosphinate-substituted bisphenol-A 單體(1),將之以工業鹼觸媒環氧化後得到環氧化合物(2),並將之與一般商業用硬化劑下進行交聯。(2)利用IR以及NMR去證明結構,並以環氧當量滴定確定(2)環氧化合物的高純度。最後測定(2)系列硬化物玻璃轉移溫度、熱膨脹係數、熱裂解溫度以及硬化物的阻燃性並與DGEBA所得硬化物進行比較。結果發現,(2)系列硬化物有較高的Tg、較佳的尺寸安定性與優異的阻燃性質。之以會有高Tg跟低的熱膨脹係數,是因為極性的P=O鍵以及巨大的phosphinate 懸掛基團使得高分子鏈難以轉動。 Part II 在這部分,利用之前實驗室所合成之磷系單官能benzoxazine並分別具有酚官能基之單體(3) ,羧酸官能基單體(4)的羧酸環氧化得到有醚基與酯基benzoxazine磷系可自身硬化環氧單體(5)與(6)。利用IR以及NMR佐證其結構正確,以及環氧滴定確定其單體的高純度。由於(3)、(4)具有酚基與羧酸會使得分子間具有氫鍵效應,環氧化之後(5)、(6)不再有分子間氫鍵,因此在DSC中所觀測到的熔點降低了許多,增加了其加工範圍。以IR分析追蹤(5)與(6)自身硬化的行為觀察特徵吸收峰之消長推測在加熱的過程中,benzoxazine基團會先進行熱開環聚合而產生酚基,接著酚基會和環氧樹脂進行開環反應,並於DSC當中也確實可觀測到兩個放熱峰的情形,第一個放熱峰是由於benzoxazine的開環所造成的,開環之後所產生的酚基會對於自身的環氧基再進行反應交聯硬化所以會出現第二個放熱峰。將(5)與(6)個別以不同比例分別加入在市售常用環氧樹脂(DGEBA)與市售硬化劑(DDM)的系統中混摻進行共聚合,並測定其熱機械性質我們可以看到仍能維持一定的玻璃轉移溫度,並且隨著加入的(5)、(6)的加入比例越多硬化物的尺寸安定性也越好,硬化物的阻燃性更是有明顯的提升。
Abstract Part I Based on phosphinate-substituted bisphenol-A (1), a diglycidyl ether derivative (2) was prepared and cured by commercially-available curing agents. The structures of (2) were confirmed by IR, high-resolution mass, 1-D and 2-D NMR spectra. Properties such as glass transition temperature, coefficient of thermal expansion, thermal decomposition temperature, and flame retardancy of the resulting epoxy thermosets were evaluated and compared with those of diglycidyl ether of bisphenol A thermosets. The resulting epoxy thermosets shows high Tg, low thermal expansion, good thermostability and excellent flame retardancy. The polar P=O bond and bulky biphenylene phosphinate pendant make polymer chains difficult to rotate, explaining the high Tg and low thermal expansion characteristic. Part II In this part, based on published phosphorous monofunctional benzoxazine monomer (3) and (4) with phenolic group and benzoic acid group respectively, self-curable oxirane compound (5) and (6) was prepared. The structures of (5-6) were confirmed by IR and NMR spectra. Observed by dynamic DSC thermogram, (5-6) own wider processing windows than (3-4), result from hydrogen bonding effect of phenolic and benzoic acid group was diminished by introduce oxirane group. IR analysis was utilized to monitor ring-opening behavior and cured with oxirane group, the reaction path and structure of P (5-6) was proposed. According to proposed reaction path of P (5-6), explaining two exotherm peaks was observed, first peak was result from benzoxazine ring-opening reaction, after that phenoic group produced by ring-opening cured with oxirane group result in second peak. (5) or (6)/DGEBA/DDM series thermosets was prepared. Properties such as glass transition temperature was maintained and better size stability. Flame retardancy of the resulting thermosets was enhanced with the content of (5) or (6) raise up.
URI: http://hdl.handle.net/11455/3735
其他識別: U0005-1308200910390100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308200910390100
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.