Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3737
標題: 以功能性矽氧烷類前驅物改質玻璃纖維薄膜及其於吸附分離之應用
Surface modification on glass fiber membranes by functional silano-precursors and their applications in adsorption separation
作者: 邱信杰
Chiu, Hsin-Chieh
關鍵字: adsorption separation
吸附分離
membrane surface modification
ion exchange
薄膜表面改質
離子交換
出版社: 化學工程學系所
引用: References [1] S. Brandt, R.A. Goffe, S.B. Kessler, J.L. O'Connor and S.E. Zale, Membrane-based affinity technology for commercial scale purifications, Biotechnology 6 (1988), p. 779. [2] D.K. Roper and E.N. Lightfoot, Separation of biomolecules using adsorptive membranes, J. Chromatogr. A 702 (1995), p. 3. [3] C. Charcosset, Purification of proteins by membrane chromatography, J. Chem. Technol. Biotechnol. 71 (1998), p. 95. [4] E. Klein, Affinity membranes: a 10-year review, J. Membr. Sci. 179 (2000), p. 1. [5] H. Zou, Q. Luo and D. Zhou, Affinity membrane chromatography for the analysis and purification of proteins, J. Biochem. Biophys. Methods 49 (2001), p. 199. [6] R. Ghosh, Protein separation using membrane chromatography: opportunities and challenges, J. Chromatogr. A 952 (2002), p. 13. [7] J.A. Gerstner, R. Hamilton and S.M. Cramer, Membrane chromatographic systems for high-throughput protein separations, J. Chromatogr. 596 (1992), p. 173. [8] T.B. Tennikova and F. Svec, High-performance membrane chromatography: highly efficient separation method for proteins in ion exchange, hydrophobic interaction and reversed-phase modes, J. Chromatogr. 646 (1993), p. 279. [9] S. Tsuneda, K. Saito, S. Furusaki and T. Sugo, High-throughput processing of proteins using a porous and tentacle anion exchange membrane, J. Chromatogr. A 689 (1995), p. 211. [10] N. Kubota, Y. Konno, S. Miura, K. Saito, K. Sugita, K. Watanabe and T. Sugo, Comparison of two convection-aided protein adsorption methods using porous membranes and perfusion beads, Biotechnol. Prog. 12 (1996), p. 869. [11] X. Zeng and E. Ruckenstein, Cross-linked macroporous chitosan anion exchange membranes for protein separations, J. Membr. Sci. 148 (1998), p. 195. [12] F. Dosio, S. Arpicco, S. Canevari, M. Figini and D. Gastaldi, Single-step purification of immunotoxins containing a high ionic charge ribosome inactivating protein clavin by carboxymethyl high-performance membrane chromatography, J. Chromatogr. A 830 (1999), p. 329. [13] S.-Y. Lin and S.-Y. Suen, Protein separation using plate-and-frame modules with ion exchange membranes, J. Membr. Sci. 204 (2002), p. 37. [14] H.N. Endres, J.A.C. Johnson, C.A. Ross, J.K. Welp and M.R. Etzel, Evaluation of an ion exchange membrane for the purification of plasmid DNA, Biotechnol. Appl. Biochem. 37 (2003), p. 259. [15] S. Zhang, A. Krivosheyeva and S. Nochumson, Large-scale capture and partial purification of plasmid DNA using anion exchange membrane capsules, Biotechnol. Appl. Biochem. 37 (2003), p. 245. [16] M.E. Avramescu, Z. Borneman and M. Wessling, Mixed-matrix membrane adsorbers for protein separation, J. Chromatogr. A 1006 (2003), p. 171. [17] J.-K. Fang, H.-C. Chiu, J.-Y. Wu and S.-Y. Suen, Preparation of polysulfone-based cation exchange membranes and their application in protein separation with a plate-and-frame module, React. Funct. Polym. 59 (2004), p. 171. [18] T. Sata, Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis - effect of hydrophilicity of anion exchange membranes on permselectivity of anions, J. Membr. Sci. 167 (2000), p. 1. [19] T. Xu, W. Yang, Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new kind of homogenous anion exchange membrane - static runs, J. Membr. Sci. 183 (2001), p. 193. [20] C. Wisniewski, F. Persin, T. Cherif, R. Sandeaux, A. Grasmick, C. Gavach, F. Lutin, Use of a membrane bioreactor for denitrification of brine from an electrodialysis process, Desalination 149 (2002), p. 331. [21] T. Sata, T. Sata, W.K. Yang, Studies on cation exchange membranes having permselectivity between cations in electrodialysis, J. Membr. Sci. 206 (2002), p. 31. [22] T. Xu, W. Yang, Industrial recovery of mixed acid (HF + HNO3) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion exchange membranes, J. Membr. Sci. 220 (2003), p. 89. [23] W.F. Weinbrenner, M.R. Etzel, Competitive adsorption of α-lactalbumin and bovine serum albumin to a sulfopropyl ion exchange membrane, J. Chromatogr. 662 (1994), p. 414. [24] H.L. Knudsen, R.L. Fahrner, Y. Xu, L.A. Norling, G.S. Blank, Membrane ion exchange chromatography for process-scale antibody purification, J. Chromatogr. A 907 (2001), p. 145. [25] H. Yang, C. Viera, J. Fischer, M.R. Etzel, Purification of a large protein using ion exchange membranes, Ind. Eng. Chem. Res. 41 (2002), p. 1597. [26] S. Zhang, A. Krivosheyeva, S. Nochumson, Large-scale capture and partial purification of plasmid DNA using anion exchange membrane capsules, Biotechnol. Appl. Biochem. 37 (2003), p. 245. [27] W.-C. Tseng, F.-L. Ho, T.-Y. Fang, S.-Y. Suen, Effect of alcohol on purification of plasmid DNA using ion exchange membrane, J. Membr. Sci. 233 (2004), p. 161. [28] W.G. Grot, Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. U.S. Patent 3,770,567 (1973). [29] G. Daufin, J.P. Escudier, H. Carrere, S. Berot, L. Fillaudeau and M. Decloux, Recent emerging applications of membrane processes in the food and dairy industry, Food Bioproducts Process. 79 (2001), p. 89. [30] T. Tarvainen, B. Svarfvar, S. Akerman, J. Savolainen, M. Karhu, P. Paronen and K. Jarvinen, Drug release from a porous ion exchange membrane in vitro, Biomaterials 20 (1999), p. 2177. [31] G. Saracco, Ionic membrane technologies for the recovery of valuable chemicals from waste waters, Ann. Chim. Rome 93 (2003), p. 817. [32] H. Strathmann, Electrodialysis and related processes. In: R.D. Nobe and S.A. Stern, Editors, Membrane Separation Technology—Principles and Applications, Elesevier Science B.V. (1995), pp. 214-278. [33] J. Ginsete, J. Garraud and G. Pourcelly, Grafting of acrylic acid with diethyleneglycol dimethacrylate onto radioperoxide polyethylene, J. Appl. Polym. Sci. 48 (1993), p. 2113. [34] S.H. Choi and Y. Nho, Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films, Radiat. Phys. Chem. 58 (2000), p. 157. [35] J.I. Bregman and R.S. Braman, Inorganic ion exchange membranes, J. Colloid Sci. 20 (1965), p. 913. [36] H. Ohya, R. Paterson, T. Nomura, S. McFadzean, T. Suzuki and M. Kogure, Properties of new inorganic membranes prepared by metal alkoxide methods. Part I. A new permselective cation exchange membrane based on oxides, J. Membr. Sci. 105 (1995), p. 103. [37] M. Kogure, H. Ohya, R. Paterson, M. Hosaka, J. Kim and S. McFadzean, Properties of new inorganic membranes prepared by metal alkoxide methods. Part II. New inorganic-organic anion exchange membranes prepared by the modified metal alkoxide methods with silane coupling agents, J. Membr. Sci. 126 (1997), p. 161. [38] H. Ohya, K. Masaoka, M. Aihara and Y. Negishi, Properties of new inorganic membranes prepared by metal alkoxide methods. Part III. New inorganic lithium permselective ion exchange membrane, J. Membr. Sci. 146 (1998), p. 9. [39] C. Wu, T. Xu and W. Yang, Fundamental studies of a new hybrid (inorganic-organic) positively charged membrane: membrane preparation and characterizations, J. Membr. Sci. 216 (2003), p. 269. [40] C. Wu, T. Xu and W. Yang, A new inorganic-organic negatively charged membrane: membrane preparation and characterizations, J. Membr. Sci. 224 (2003), p. 117. [41] H. Y. Chang, C. W. Lin, Proton Conducting Membranes Based on PEG/SiO2 Nanocomposites for direct Methanol Fuel Cells, J. Membr. Sci. 218 (2003), p. 295 [42] C. Wu, T. Xu and W. Yang, Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials: effect of molecular weight of sol-gel precursor, J. Solid State Chem. 177 (2004), p. 1660. [43] C. Wu, T. Xu, M. Gong and W. Yang, Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials. Part II. Membrane preparation and characterizations, J. Membr. Sci. 247 (2005), p. 111. [44] L. Depre, M. Ingram and C. Poinsignon et al., Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices, Electrochim. Acta 45 (2000), p. 1377. [45] K.A. Mauritz, D.A. Mountz, D.A. Reuschle and R.I. Blackwell, Self-assembled organic/inorganic hybrids as membrane materials, Electrochim. Acta 50 (2004), p. 565. [46] J.H. Zou, Y.B. Zhao and W.F. Shi, Preparation and properties of proton conducting organic-inorganic hybrid membranes based on hyperbranched aliphatic polyester and phosphoric acid, J. Membr. Sci. 245 (2004), p. 35. [47] C. W. Lin, R. Thangamuthu and P. H. Chang, PWA-doped PEG/SiO2 proton conducting hybrid membranes for fuel cell applications, J. Membr. Sci. 254 (2005) p. 197 [48] R. Ghosh, Purification of lysozyme by microporous PVDF membrane-based chromatographic process, Biochem. Eng. J. 14 (2003), p. 109. [49] E. Li-Chan, S. Nakai, J. Sim, D.B. Bragg and K.V. Lo, Lysozyme separation from egg white by cation exchange column chromatography, J. Food Sci. 51 (1986), p. 1032. [50] C.-M. Jiang, M.-C. Wang, W.-H. Chang and H.-M. Chang, Isolation of lysozyme from hen egg albumen by alcohol-insoluble cross-linked pea pod solid ion exchange chromatography, J. Food Sci. 66 (2001), p. 1089. [51] S.Z. Borneman and M. Wessling, Enzyme capturing and concentration with mixed matrix membrane adsorbers, J. Membr. Sci. 280 (2006), p. 406. [52] R. Ghosh and T. Wong, Effect of module design on the efficiency of membrane chromatographic separation processes, J. Membr. Sci. 281 (2006), p. 532. [53] S.R. Wickramasinghe, J.O. Carlson, C. Teske, J. Hubbuch and M. Ulbricht, Characterizing solute binding to macroporous ion exchange membrane adsorbers using confocal laser scanning microscope, J. Membr. Sci. 281 (2006), p. 609. [54] R. Jiraratananon, A. Sungpet, P. Luangsowan, Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt, Desalination 130 (2000), p. 177. [55] S. Karcher, A. Kornmuller, M. Jekel, Screening of commercial sorbents for the removal of reactive dyes, Dyes Pigments 51 (2001), p. 111. [56] I. Koyuncu, Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity, Desalination 143 (2002), p. 243. [57] S. Karcher, A. Kornmuller, M. Jekel, Anion exchange resins for removal of reactive dyes from textile wastewaters, Water Res. 36 (2002), p. 4717. [58] S. Netpradit, P. Thiravetyan, S. Towprayoon, Application of ‘waste' metal hydroxide sludge for adsorption of azo reactive dyes, Water Res. 37 (2003), p. 763. [59] C. Allegre, P. Moulin, M. Maisseu, F. Charbit, Treatment and reuse of reactive dyeing effluents, J. Membr. Sci. 269 (2006), p. 15. [60] H.-L. Liu, Y.-R. Chiou, Optimal decolorization efficiency of reactive red 239 by UV/ZnO photocatalytic process, J. Chin. Inst. Chem. Engrs. 37 (2006), p. 289. [61] V.K. Gupta, Suhas, I. Ali, V.K. Saini, Removal of Rhodamine B, Fast green, Methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 43 (2004), p. 1740. [62] V.K. Gupta, I. Ali, V.K. Saini, T. Van Gerven, B. Van der Bruggen, C. Vandecasteele, Removal of dyes from wastewater using bottom ash, Ind. Eng. Chem. Res. 44 (2005), p. 3655. [63] V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of the hazardous azo dye Acid Orange 7 through adsorption over waste materials: bottom ash and de-oiled soya, Ind. Eng. Chem. Res. 45 (2006), p. 1446. [64] V.K. Gupta, I. Ali, V.K. Saini, T. Van Gerven, B. Van der Bruggen, C. Vandecasteele, Removal of dyes from wastewater using bottom ash, Ind. Eng. Chem. Res. 44 (2005), p. 3655. [65] V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of the hazardous azo dye Acid Orange 7 through adsorption over waste materials: bottom ash and de-oiled soya, Ind. Eng. Chem. Res. 45 (2006), p. 1446. [66] F.-C. Wu, R.-L. Tseng, R.-S. Juang, Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon, J. Chem. Technol. Biotechnol. 77 (2002), p. 1269. [67] J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon, Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes, Dyes Pigments 69 (2006), p. 196. [68] E. Lorenc-Grabowska, G. Gryglewicz, Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon, Dyes Pigments 74 (2007), p. 34. [69] C.-H. Liu, J.-S. Wu, H.-C. Chiu, S.-Y. Suen, K.H. Chu, Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers, Water Res. 41 (2007), p. 1491. [70] J.-S. Wu, C.-H. Liu, K.H. Chu, S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Membr. Sci. 309 (2008), p. 239. [71] C.-S. Chang, H.-S. Ni, S.-Y. Suen, W.-C. Tseng, H.-C. Chiu, C.P. Chou, Preparation of inorganic-organic anion exchange membranes and their application in plasmid DNA and RNA separation, J. Membr. Sci. 311 (2008), p. 336. [72] I.-F. Su, L.-J. Chen and S.-Y. Suen, Adsorption separation of terpene lactones from Ginkgo biloba L. extract using glass fiber membranes modified with octadecyltrichlorosilane, J. Sep. Sci. 28 (2005), p. 1211. [73] C.-M. Jiang, M.-C. Wang, W.-H. Chang and H.-M. Chang, Isolation of lysozyme from hen egg albumen by alcohol-insoluble cross-linked pea pod solid ion exchange chromatography, J. Food Sci. 66 (2001), p. 1089. [74] M.Y. Arica, M. Yilmaz, E. Yalcin and G. Bayramoğlu, Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification, J. Chromatogr. B 805 (2004), p. 315. [75] M.Y. Arica and G. Bayramoğlu, Purification of lysozyme from egg white by Reactive Blue 4 and Reactive Red 120 dye-ligands immobilised composite membranes, Process Biochem. 40 (2005), p. 1433. [76] M. Yilmaz, G. Bayramoğlu and M.Y. Arica, Separation and purification of lysozyme by Reactive Green 19 immobilised membrane affinity chromatography, Food Chem. 89 (2005), p. 11. [77] F. Delval, G. Crini, N. Morin, J. Vebrel, S. Bertini, G. Torri, The sorption of several types of dye on crosslinked polysaccharides derivatives, Dyes Pigments 53 (2002), p. 79. [78] L. You, Z. Wu, T. Kim, K. Lee, Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane, J. Colloid Interface Sci. 300 (2006), p. 526. [79] S. Chatterjee, S. Chattrjee, B.P. Chatterjee, A.K. Guha, Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics, Colloid Surface Physicochem. Eng. Aspects 299 (2007), p. 146. [80] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 83rd ed., CRC Press, New York, 2002, p. 46. [81] M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study, J. Colloid Interface Sci. 287 (2005), p. 6. [82] N.K. Amin, Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith, Desalination 223 (2008), p. 152.
摘要: 本論文以功能性矽氧烷類前驅物改質玻璃纖維薄膜製備離子交換薄膜,並分成兩部分: 第一部分 ”以玻璃纖維薄膜為基材製備陽離子交換薄膜及應用於雞蛋白中溶菌脢的分離純化”;第二部分 ” 有機-無機混成陰離子交換膜的製備及應用於陰離子染料的吸附性分離”。 第一部份的研究,使用具矽氧烷基的monophenyl trimethoxysilane (MPh),在多孔性玻璃纖維薄膜表面進行改質,續以氯磺酸反應後獲得陽離子交換薄膜。研究中探討玻璃纖維薄膜浸泡於MPh溶液中,改質時間對薄膜性質的影響,並以接觸角儀、傅立葉紅外線光譜儀、薄膜導電度、與薄膜離子交換容量,分析改質後之薄膜性質並證實改質成功。當改質時間為60分鐘時,可獲得較佳改質效果,所得的薄膜離子交換容量為49.5 micro mol/disc。與商業型具磺酸官能基的陽離子交換薄膜(ICE 450 無支撐型薄膜)相比,雖在批式實驗中本研究製備之薄膜的吸附量較商業薄膜低,但當吸附環境為較高鹽類濃度時,本研究所製備之薄膜呈現較低的非特定吸附量。當薄膜進一步應用於溶菌脢分離的流動程序中,製備之薄膜在純化效率的表現上,較ICE 450 無支撐型薄膜來的優異。 第二部份的研究,使用不同濃度的二級胺的前驅物(由N-[3-(trimethoxysilyl) propyl] ethylene diamine及3-(triethoxysilyl)propyl isocyanate製備),在多孔性玻璃纖維薄膜表面進行改質,接著以溴乙烷反應後獲得陰離子交換薄膜。續以傅立葉紅外線光譜儀、電子式掃描顯微鏡、接觸角儀、水含量、與薄膜離子交換容量,分析改質後之薄膜性質,並證實薄膜改質成功。薄膜用於陰離子型染料Cibacron blue 3GA的批式吸附結果,發現較佳改質條件為:改質溶液的濃度為前驅物/dimethyl formamide=1:3 (w/w)。此條件所得薄膜之離子交換容量為2.12 mg/cm3及最大的染料吸附量為2.12 mg/cm3。不同的脫附溶液應用於批式脫附實驗,並發現使用1 N KSCN 60%的甲醇溶液可獲得較好的脫附效果(70%脫附)。使用兩片改質的薄膜應用於流動分離程序中(進料流速:1 mL/min;沖洗及脫附流速: 8 mL/min),進料20 mL陰離子染料(濃度:0.05 g/L),可達超過92%的回收率。且薄膜經過吸附、清洗、脫附步驟共計重複10次的循環後,仍在分離效果上呈現優良並未發生衰退現象。
The ion exchange membranes are prepared with surface modification on glass fiber membranes by functional silano-precursors. This study was divided into two parts: I, “Isolation of lysozyme from hen egg albumen using glass fiber-based cation exchange membranes”; and II, “Adsorptive removal of anionic dye by inorganic-organic hybrid anion exchange membranes”. In the first part, porous glass fiber membranes were coated with monophenyl trimethoxysilane (MPh) and then sulphonated by chlorosulphonic acid to prepare the cation exchange membranes with sulphonic acid groups. Different MPh-coating times were tested and the properties of the resulting membranes such as contact angle, FTIR spectrum, conductivity, and ion exchange capacity were measured. It was found that the optimal MPh-coating time was 60 min and the related ion exchange capacity was 49.5 micromol./disc. The modified membrane under the optimal MPh-coating condition was adopted for lysozyme isolation. The results were compared with those for the commercial cation exchange membrane with sulphonic acid groups (ICE 450 unsupported membrane). Although the prepared membrane exhibited less adsorption capacity than ICE 450 unsupported membrane in the batch lysozyme adsorption experiment, it showed lower non-specific binding ratio under higher salt concentration. In the flow process isolating lysozyme from hen egg albumen, the purification effectiveness obtained using the prepared cation exchange membrane was superior to the ICE 450 unsupported membrane. In the second part of this study, anion exchange membranes with quaternary ammonium groups were prepared by coating a precursor with secondary amino groups (the product of N-[3-(trimethoxysilyl) propyl] ethylene diamine and 3-(triethoxysilyl)propyl isocyanate) on porous glass fiber membranes and further treated with bromoethane. The precursor coating and bromoethane treatment have been proved successful by membrane characterization such as Fourier-transform infrared (FTIR) spectrum, scanning electron microscopy (SEM) photo, contact angle, water content, and ion exchange capacity. The optimal feed precursor/dimethyl formamide (DMF) ratio was found as 1:3 (w/w) based on the batch adsorption results of anionic dye Cibacron blue 3GA. The membrane ion exchange capacity for this condition was 6.8 micro mol/cm2 (or 104.2 micro mol/cm3) and the maximum dye adsorption capacity was 2.12 mg/cm3. Different desorption solutions were tested in batch desorption process, and the use of 1 N KSCN in 60% methanol attained a better performance (70% desorption). In the chromatography process with two pieces of 47 mm modified anion exchange membrane discs (loading at 1 mL/min; washing and elution at 8 mL/min), more than 92% of dye molecules could be recovered from a 20 mL feed aqueous solution with an initial dye concentration of 0.05 g/L. Moreover, the membrane performance remained unaltered over ten successive cycles of dye adsorption, washing, and elution.
URI: http://hdl.handle.net/11455/3737
其他識別: U0005-1308200918375500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308200918375500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.