Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3743
標題: 以二維數學模型模擬多邊形細胞內被動傳輸與結合機制之關係
A Mathematical Two-Dimension Model Accounting for Binding Mechanisms Effect on Passive diffusion within Polygon Cells
作者: 鍾允廷
Yun-Ting-Chung
關鍵字: apparent diffusion coefficient
表觀擴散係數
出版社: 化學工程學系所
引用: 文獻參考 1. Arrio-Dupont, M., G. Foucault, et al. (2000). "Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells." Biophysical journal 78(2): 901-907. 2. Bennett, M. R., L. Farnell, et al. (2005). "A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks." Biophysical journal 89(4): 2235-2250. 3. Beaulieu, C. (2002). "The basis of anisotropic water diffusion in the nervous system-a technical review." NMR in Biomedicine 15(7-8): 435-455. 4. Becker, W. M., L. Kleinsmith, et al.(2000). The world of the cell, Benjamin/Cummings. 5. Bassolino-Klimas, D., H. Alper, et al. (1993). "Solute diffusion in lipid bilayer membranes: an atomic level study by molecular dynamics simulation." Biochemistry 32(47): 12624-12637. 6. Blatter, L. A. and W. Wier (1990). "Intracellular diffusion, binding, and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2." Biophysical journal 58(6): 1491-1499. 7. Blum, J. J., G. Lawler, et al. (1989). "Effect of cytoskeletal geometry on intracellular diffusion." Biophysical journal 56(5): 995-1005. 8. Backx, P. H., P. De Tombe, et al. (1989). "A model of propagating calcium-induced calcium release mediated by calcium diffusion." Journal of General Physiology 93(5): 963-977. 9. Brink, P. R. and S. Ramanan (1985). "A model for the diffusion of fluorescent probes in the septate giant axon of earthworm. Axoplasmic diffusion and junctional membrane permeability." Biophysical journal 48(2): 299-309. 10. C.-L., Chin, F. Wehrli, et al. (2002). "Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture." Magnetic Resonance in Medicine 47(3): 455-460. 11. Dunham, P. B. and J. Ellory (1981). "Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride." The Journal of Physiology 318(1): 511-530. 12. Davson, H. and E. Spaziani (1959). "The blood--brain barrier and the extracellular space of brain." The Journal of Physiology 149(1): 135. 13. Fischer, H., R. Gottschlich, et al. (1998). "Blood-brain barrier permeation: molecular parameters governing passive diffusion." Journal of Membrane Biology 165(3): 201-211. 14. Fushimi, K. and A. Verkman (1991). "Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry." Journal of Cell Biology 112(4): 719. 15. Gaffield, M. A., S. Rizzoli, et al. (2006). "Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals." Neuron 51(3): 317-326. 16. Giaume, C. and L. Venance (1998). "Intercellular calcium signaling and gap junctional communication in astrocytes." Glia 24(1). 17. Greber, U. F. and L. Gerace (1995). "Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus." Journal of Cell Biology 128(1): 5-14. 18. Grass, G. M. and S. Sweetana (1988). "In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell." Pharmaceutical research 5(6): 372-376. 19. H.-C., Chang, Y.-C., Lin, et al. (2008). "A two-dimensional diffusion model quantifying intracellular transport with independent factors accounting for cytosol viscosity, binding, and steric hindrance." Biochemical Engineering Journal 41(3): 217-227. 20. Huber, J. D., R. Egleton, et al. (2001). "Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier." TRENDS in Neurosciences 24(12): 719-725. 21. Haak, R. A., F. Kleinhans, et al. (1976). "The viscosity of mammalian nerve axoplasm measured by electron spin resonance." The Journal of Physiology 263(2): 115-137. 22. Jafri, M. S. and J. Keizer (1995). "On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves." Biophysical journal 69(5): 2139-2153. 23. Jacobson, K. and J. Wojcieszyn (1984). "The translational mobility of substances within the cytoplasmic matrix." Proceedings of the National Academy of Sciences 81(21): 6747-6751. 24. Klonis, N., M. Rug, et al. (2002). "Fluorescence photobleaching analysis for the study of cellular dynamics." European Biophysics Journal 31(1): 36-51. 25. K.-C., Chen and C. Nicholson (2000). Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge, National Acad Sciences. 97: 8306-8311. 26. Kraszewski, K., L. Daniell, et al. (1996). "Mobility of synaptic vesicles in nerve endings monitored by recovery from photobleaching of synaptic vesicle-associated fluorescence." Journal of Neuroscience 16(19): 5905-5913. 27. Kao, H. P., J. Abney, et al. (1993). "Determinants of the translational mobility of a small solute in cell cytoplasm." Journal of Cell Biology 120(1): 175-184. 28. Lukacs, G. L., P. Haggie, et al. (2000). "Size-dependent DNA mobility in cytoplasm and nucleus." Journal of Biological Chemistry 275(3): 1625-1629. 29. Laffafian, I. and M. Hallett (1998). "Lipid-assisted microinjection: introducing material into the cytosol and membranes of small cells." Biophysical journal 75(5): 2558-2563. 30. Minton, A. P. (2001). The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, ASBMB. 276: 10577-10580. 31. Maughan, D. and C. Lord (1988). "Protein diffusivities in skinned frog skeletal muscle fibers." Advances in experimental medicine and biology 226: 75. 32. Mastro, A. M., M. Babich, et al. (1984). "Diffusion of a small molecule in the cytoplasm of mammalian cells." Proceedings of the National Academy of Sciences 81(11): 3414-3418. 33. Nelson, D. L., A. Lehninger, et al. (2004). Lehninger Principles of Biochemistry Lecture Notebook, WH Freeman. 34. Nitsche, J. M., H.-C., Chang, et al. (2004). "A transient diffusion model yields unitary gap junctional permeabilities from images of cell-to-cell fluorescent dye transfer between Xenopus oocytes." Biophysical journal 86(4): 2058-2077. 35. Nomura, Y., H. Sakuma, et al. (1994). "Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging." American Journal of Neuroradiology 15(2): 231-238. 36. Nicholson, C. and L. Tao (1993). "Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging." Biophysical journal 65(6): 2277-2290. 37. Northrup, S. H. (1988). "Diffusion-controlled ligand binding to multiple competing cell-bound receptors." The Journal of Physical Chemistry 92(20): 5847-5850. 38. Nasi, E. and D. Tillotson (1985). "The rate of diffusion of Ca2+ and Ba2+ in a nerve cell body." Biophysical journal 47(5): 735-738. 39. Papadopoulos, S., K. Jurgens, et al. (2000). "Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction." Biophysical journal 79(4): 2084-2094. 40. Popov, S. and M. Poo (1992). "Diffusional transport of macromolecules in developing nerve processes." Journal of Neuroscience 12(1): 77-85. 41. Peters, R., A. Brunger, et al. (1981). "Continuous fluorescence microphotolysis: a sensitive method for study of diffusion processes in single cells." Proceedings of the National Academy of Sciences 78(2): 962-966. 42. Peters, R., J. Peters, et al. (1974). "A microfluorimetric study of translational diffusion in erythrocyte membranes." Biochimica et biophysica acta 367(3): 282. 43. Rao, S. S. (2001). Applied numerical methods for engineers and scientists, Prentice Hall Professional Technical Reference. 44. Roth, G. S.(1995). "Changes in tissue responsiveness to hormones and neurotransmitters during aging." Experimental gerontology 30(3-4): 361-368. 45. Stroh, M., W. Zipfel, et al. (2003). "Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy." Biophysical journal 85(1): 581-588. 46. Swaminathan, R., S. Bicknese, et al. (1996). "Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery." Biophysical journal 71(2): 1140-1151. 47. Saxton, M. J. (1996). "Anomalous diffusion due to binding: a Monte Carlo study." Biophysical journal 70(3): 1250-1262. 48. Smith, S. J., R. Koehler, et al. (1994). "Neural signalling: Neuromodulatory astrocytes." Biophysical journal 4(9): 807-810. 49. Stewart, J. M., W. Driedzic, et al. (1991). "Fatty-acid-binding protein facilitates the diffusion of oleate in a model cytosol system." Biochemical Journal 275(Pt 3): 569. 50. Shoup, D. and A. Szabo (1982). "Role of diffusion in ligand binding to macromolecules and cell-bound receptors." Biophysical journal 40(1): 33-39. 51. Smith, S. J. and R. Zucker (1980). "Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones." The Journal of Physiology 300(1): 167-196. 52. Schlessinger, J., Y. Shechter, et al. (1978). "Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts." Proceedings of the National Academy of Sciences 75(11): 5353-5357. 53. Tracqui, P., G. Cruywagen, et al. (1995). "A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth." Cell Proliferation 28(1): 17-31. 54. Tsan, M. F. and R. Berlin (1971). "Effect of phagocytosis on membrane transport of nonelectrolytes." Journal of Experimental Medicine 134(4): 1016-1035. 55. Verkman, A. S. (2002). "Solute and macromolecule diffusion in cellular aqueous compartments." Trends in Biochemical Sciences 27(1): 27-33. 56. Vander, A. J., J. Sherman, et al. "Human physiology." 7th ed. 57. Wijmans, J. G. and R. Baker (1995). "The solution-diffusion model: a review." Journal of membrane science 107(1-2): 1-21. 58. Wojcieszyn, J. W., R. Schlegel, et al. (1981). "Diffusion of injected macromolecules within the cytoplasm of living cells." Proceedings of the National Academy of Sciences 78(7): 4407-4410. 59. Zwanzig, R. and A. Szabo (1991). "Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces." Biophysical journal 60(3): 671-678.
摘要: 細胞內物質的運輸在維持細胞正常功能扮演著重要的角色,而神經纖維廣分佈於體內各個調節的器官,當受到刺激就會產生電化學衝動,傳到其所支配的肌肉或腺體以執行作用,維持細胞內及人體的恆定。 在此研究中設定三種不同的結合機制,以二維數學模型探討分子利用濃度梯度作為驅動力在神經細胞內擴散的情形,並模擬細胞內發生的結合效應;從研究的結果得知結合效應在質傳過程中所扮演的角色,也藉由表觀擴散係數來定量分子在細胞質內的擴散,將結合效應從表觀擴散係數中獨立出來,並調控結合效應的因子與實驗數據擬合。
Intracellular transport of biomolecules within cell plays an important role to maintain normal cellular function. Nerve cells are widely distributed over our bodies, when neuron receives stimulation, it releases chemical mediators, and muscles or glands make proper responses to maintain human homeostasis. Therefore, understanding of intracellular transport mechanisms provides a potential answer for curing diseases, and the corresponding drug applications. This work develops a two dimensional mathematical model describing intracellular passive diffusion in nerve cell and assumes several different binding mechanisms. Furthermore, we analyzed quantitatively the factors that affect intracellular biomolecules diffusion, and then fitted the experimental data by regulating binding factors. The purpose of this work is to determine apparent diffusion coefficients, which relate to the mobility of biomolecules in living cells.
URI: http://hdl.handle.net/11455/3743
其他識別: U0005-1412200900202600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1412200900202600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.