Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3744
標題: Au-20wt.%Sn銲料與Cu基材之界面反應
Interfacial reactions of Au-20wt.%Sn solder on Cu substrate
作者: 鍾享牟
Chung, Hsiang-Mou
關鍵字: intermetallic compound
介金屬化合物
dendrite
eutectic
枝晶
共晶
出版社: 化學工程學系所
引用: 1. J. M. Song, P. C. Liu, C. L. Shih, and K. L. Lin, “Role of Ag in the Formation of Interfacial Intermetallic Phases in Sn-Zn Solder”, Journal of Electronic Materials, Vol. 34(9), pp. 1249-1254 (2005). 2. 林光隆、宋振銘、黃家緯,“Sn-Zn系列無鉛銲錫合金與基材界面金屬間化合物生成之探討”,界面科學會誌,26卷8期,pp. 61-70 (2004)。 3. J. W. Yoon and S. B. Jung, “Reliability studies of Sn-9Zn/Cu solder joints with aging treatment”, Journal of Alloys and Compounds, Vol. 407, pp. 141-149 (2006). 4. S. W. Chen and Y. W. Yen, “Interfacial Reactions in Ag-Sn/Cu Couples”, Journal of Electronic Materials, Vol. 28(11), pp. 1203-1208 (1999). 5. W. K. Choi and H. M. Lee, “Effect of Soldering and Aging Time on Interfacial Microstructure and Growth of Intermetallic Compounds Between Sn-3.5Ag Solder Alloy and Cu Substrate”, Journal of Electronic Materials, Vol. 29(10), pp. 1207-1213 (2000). 6. C. E .Ho, R. Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, “Effects of limited cu supply on soldering reactions between SnAgCu and Ni”, Journal of Materials Research, Vol. 35(5), pp. 1017-1024 (2006). 7. K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders”, Journal of Applied Physics, Vol. 93(3), pp. 1335-1353 (2003). 8. K. N. Tu and K. Zeng, “Tin-lead(SnPb) solder reaction in flip chip technology”, Materials Science and Engineering R, Vol. 34, pp. 1-58 (2001). 9. K. Z. Wang and C. M. Chen, “Intermetallic Compound Formation and Morphology Evolution in the 95Pb5Sn Flip-Chip Solder Joint with Ti/Cu/Ni Under Bump Metallization during Reflow Soldering”, Journal of Electronic Materials, Vol. 34(12), pp. 1543-1549 (2005). 10. T. C. Chang, M. H. Hon, and M. C. Wang, “Intermetallic compounds formation and interfacial adhesion strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate”, Journal of Alloys and Compounds, Vol. 352, pp. 168-174 (2003). 11. M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, “Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder as replacement for Sn-Pb solder ”, Journal of Alloys and Compounds, Vol. 400, pp. 136-144 (2005). 12. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998). 13. D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solder with Cu substrate”, Journal of Alloys and Compounds, Vol. 385, pp. 119-125 (2004). 14. 陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立圖書,pp. 136 (2004)。 15. 鐘文仁、陳佑任,“IC封裝製程與CAE應用”,全華科技圖書 (2004)。 16. 陳志銘,“微電子構裝材料與技術”,化工技術,第十四卷, pp. 114-123 (2006)。 17. T. B. Massalski, “Binary alloy phase diagrams”, (Materials Park, OH: ASM Intl., 1990). 18. 黃嘉緯、林光隆,“電子構裝無鉛銲錫的發展現況”,銲接與切割,13卷2期 (2003)。 19. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, R27, pp. 95-141 (2000). 20. 莊東漢、吳醒非、黃貴偉、顏秀芳、林修任,“銲錫接點界面反應生成介金屬形態及其動力學”,界面科學會誌,26卷2期,pp. 71-82 (2004)。 21. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical properties”, Applied Physics Letters, Vol. 63(1), pp. 15-17 (1993). 22. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998). 23. T. C. Chang, M. H. Hon, and M. C. Wang, “Intermetallic compounds formation and interfacial adhesion strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate”, Journal of Alloys and Compounds, Vol. 352, pp. 168-174 (2003). 24. D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solder with Cu substrate”, Journal of Alloys and Compounds, Vol. 385, pp. 119-125 (2004). 25. Y. S. Kim, K. S. Kim, C. W. Hwang, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys”, Journal of Alloys and Compounds, Vol. 352, pp. 237-245 (2003). 26. T. C. Chang, M. C. Wang, and M. H. Hon, “Effect of aging on the growth of intermetallic compounds at the interface of Sn-9Zn-xAg/Cu substrates”, Journal of Crystal Growth, Vol. 250, pp. 236-243 (2003). 27. K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32(2), pp. 95-100 (2003). 28. S. C. Chang, S. C. Lin, and K. C. Hsieh, “The Foemation and Growth of Intermetallic Compounds in Sn-Zn and Sn-Zn-Al Solder with Ni/Au Surface Finish”, Journal of Electronic Materials, Vol. 35(3), pp. 399-405 (2006). 29. K. L. Lin, P. C. Liu, and J. M. Song, “Wetting Interaction between Pb-free Sn-Zn Series Solders and Cu,Ag Substrates”, IEEE Electronic Components and Technology Conference, Vol. 2, pp. 1310-1313 (2004). 30. C. S. Lee and F. S. Shieu, “Growth of Intermetallic Compounds in the Sn-9Zn/Cu Joint”, Journal of Electronic Materials, Vol. 35(8), pp. 1660-1664 (2006). 31. H. Okamoto, “Journal of Phase Equilibria and Diffusion”, Vol. 28(5), (2007). 32. G. Elger, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl, and E. Jager, “Development of an assembly process and reliability investigations for flip-chip LEDs using the AuSn soldering”, Microsystem Techologies, Vol. 7, pp. 239-243 (2002). 33. Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel / Immersion Gold”, 48th IEEE Electronic Components and Technology Conference, pp. 952-961 (1998). 34. Y. H. Wang, K. Nishida, M. Hutter, T. Kimura, and T. Suga, “Low-Temperature Process of Fine-Pitch Au-Sn Bump Bonding”, Japanese Journal of Applied Physics, Vol. 46, pp. 1961-1967 (2007). 35. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of Interface reaction Productions between Cu and various Solder Alloys by Thermodynsmic Calculation”, Acta Metallurgica, Vol. 45(5), pp. 1867-1874 (1997). 36. O. B. Karlsen, A. Kjekshus, and E. Rost, “The Ternary System Au-Cu-Sn”, Acta Chemica Scandinavica, Vol. 46, pp.147-156 (1992). 37. O. B. Karlsen, A. Kjekshus, and E. Rost, “Ternary Phases in the system Au-Cu-Sn”, Acta Chemica Scandinavica, Vol. 44 , pp. 197-198 (1990). 38. O. B. Karlsen, A. Kjekshus, C. Romming, and E. Rost, “The Crystal Structure of the Low-Temperature Au80-vCuvSn20 Phase”, Acta Chemica Scandinavica, Vol.46, pp. 1076-1082 (1992). 39. H. G. Song, J. W. Morris, Jr., and M. T. McCormack, “The Microstructure of Ultrafine Eutectic Au-Sn solder Joint on Cu”, Journal of Electronic Materials, Vol. 29(8), pp. 1038-1046 (2000). 40. Y. W. Yen, C. C. Jao, H. M. Hsiao, C. Y. Lin, and C. Lee, “Investigation of the phase equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au quaternary systems and interfacial reactions in Sn-Cu/Au couples”, Journal of Electronic Materials, Vol. 36(2), pp. 147-158 (2007). 41. 蕭憲明、李嘉平、顏怡文,“金-銅-錫三元合金、銀-金-銅-錫四元合金系統相平衡及錫-銅合金與金基材的界面反應”,國立台灣科技大學化學工程系碩士論文 (2005)。 42. J. W. Yoon, H. S. Chun, H. J. Lee, and S. B. Jung, “Microstructural evolution and interfacial reactions of fluxless-bonded Au-20Sn/Cu solder joint during reflow and aging”, Journal of Materials Research, Vol. 22(10), pp. 2817-2824 (2007). 43. S. K. Kang, D. Y. Shih, P. Lauro, and M. Y. Myung, “Interfacial Reaction Studies on Lead (Pb)-Free Solder Alloys”, IEEE Transactions on electronics manufacturing, Vol. 25, pp. 155-161 (2002). 44. C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao, “Volume Effect on the Soldering Reaction between SnAgCu Solders and Ni”, Proceedings of 10th International Symposium on Advanced Packaging Materials, 16th, pp. 39-44 (2005). 45. C. E. Ho, Y. L. Lin, and C. R. Kao, “Strong Effect of Cu Concentration on the Reaction between Lead-Free Microelectronic Solders and Ni”, Chemistry of Materials, Vol. 14(3), pp. 949-951 (2002). 46. C. E. Ho, R. Y. Lin, R. Y. Tsai, and C. R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni”, Journal of Electronic Materials, Vol. 31, pp.584-590 (2002). 47. W. T. Chen, C. E. Ho, and C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, Journal of Materials Research, Vol. 17, pp. 263-266 (2002). 48. 何廣福、趙隆山,“方向性凝固之研究”,國立成功大學工程科學系碩士論文 (2005)。 49. 曾繁宗,李偉賢,“304L不銹鋼之惰性氣體鎢棒電弧銲及遮蔽金屬電弧銲銲接件的高速撞擊行為與顯微結構之特性分析”, 國立成功大學工程科學系碩士論文 (2002)。 50. D. A. Porter and K. E. Easterling, “Phase transformations in metals and alloys”, (London, Chapman & Hall, 1992). 51. M. C. Flemings, “Solidification processing”, (New York, McGraw-Hill, 1974 ). 52. S. Kou, “Welding Metallurgy”, (New York, J. Wiley & Sons, 1987 ). 53. E. Folkhard, G. Rabensteiner, E. Pertender, H. Schabereiter, and J. Tösch, “Welding Metallurgy of Stainless steels”, (New York, Springer-Verlag, 1984 ). 54. C. Beckermann, “Modeling Segregation and Grain structure Development in Equiaxed Solidification with Convection”, JOM, pp. 13-17 (1997). 55. Y. C. Chan, C. W. Tan, B. Leung, and H. D. Liu, “Effects of soft beam energy on the microstructure of Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu solder joints in lensed-SM-fiber to laser-diode-affixing application”, Optics and Lasers in Engineering, Vol. 46, pp. 75-82 (2008).
摘要: 在光學與電子封裝上常使用Au-20wt.%Sn共晶銲料做為焊接材料,而Cu是常見的金屬基材,因此本研究探討不同體積之Au-20wt.%Sn銲料與Cu基材於330℃與310℃焊接後的微結構演化。回焊1min後的凝固銲料內部會形成薄片狀介金屬化合物(intermetallic compound, IMC)ζ-(Au,Cu)5Sn + δ-(Au,Cu)Sn二相,於銲料與Cu基材的界面處會形成ζ-(Au,Cu)5Sn與AuCu固溶體,其中ζ-(Au,Cu)5Sn相會以不規則的柱狀型態析出在界面處。隨著回焊時間增加,銲料內部粗化的薄片狀介金屬化合物會漸漸增加。當銲料體積從4.00±0.3mg縮小至2.11±0.26mg時,形成枝晶(dendrite)結構ζ-(Au,Cu)5Sn相的量愈多。當以furnace-cooling、fan-cooling、ice-cooling等不同方式冷卻,會影響凝固時的枝晶結構。由垂直截面示意相圖(vertical section)可得知銲料凝固路徑是經由L+ζ→L+ζ+δ→ζ+δ,因此提早析出的ζ與δ相於凝固時會有粗化之現象,並在銲料內部形成粗與細緻薄片狀IMC。從不同回焊溫度可知枝晶結構形成與Cu的溶解量相關,Cu溶解量大,會使銲料組成從原本之共晶(eutectic)轉變成亞共晶(hypo-eutectic),而使液/固界面發生過冷,於凝固時形成柱狀晶結構。Au20Sn/Cu回焊凝固後,界面處不規則成長之ζ-(Au,Cu)5Sn相與銲料內部的枝晶成長等微結構的演化,可以使用二元相圖與垂直截面示意相圖解釋。不同體積銲料於230℃熱處理後,銲料內部薄片狀結構ζ-(Au,Cu)5Sn與δ-(Au,Cu)Sn皆有粗化之現象,可以使用Gibbs-Thomson effect 解釋。熱處理期間銲料內部ζ-(Au,Cu)5Sn相會在界面處成長,在熱處理一天後便有層狀AuCu與AuCu3二相之介金屬化合物形成,且層狀結構隨著熱處理時間增加而增厚。
Eutectic Au-20wt%.Sn (Au20Sn) solder alloy is commonly used in bonding applications for microelectronic and optoelectronic packages. The copper is a common substrate used in electronic equipment. The subject of this study is to investigate the microstructure evolution of the Au20Sn solder reflowed on Cu with different solder volumes of 5.4×109 and 2.84×108m3. After reflow for 1min, the as-solidified solder matrix presented a typical eutectic ζ-(Au,Cu)5Sn + δ-(Au,Cu)Sn lamellar microstructure and two phases, ζ-(Au,Cu)5Sn and AuCu, were formed at the solder/Cu interface. The ζ-(Au,Cu)5Sn phase grew very irregularly at the interface. Upon increasing the reflow time, part of the fine lamellar microstructure coarsened in the as-solidified solder matrix, and therefore the solder matrix displayed a composite microstructure of fine lamellar eutectic and coarse eutectic. In addition, dendritic growth of the ζ-(Au,Cu)5Sn phase was observed and the dendrites were found to grow at a faster rate in the solder matrix of smaller volume. The microstructural evolution at the Au20Sn/Cu solder joint during reflow, including irregular growth of ζ-(Au,Cu)5Sn at the interface, dendritic growth of ζ-(Au,Cu)5Sn in the solder matrix, and development of eutectic microstructure, was explained using related phase diagram and vertical section. After solid-state aged for 1day to 120days at 230℃, eutectic ζ-(Au,Cu)5Sn + δ-(Au,Cu)Sn lamellar microstructure coarsed. This phenomenon can be explained by Gibbs-Thomson effect . The ζ-(Au,Cu)5Sn phase grew at the interface,and it's microstructure changed from irregular pillars to layer.
URI: http://hdl.handle.net/11455/3744
其他識別: U0005-1507200914211600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1507200914211600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.