Please use this identifier to cite or link to this item:
標題: 由連續自我反覆反應合成超分枝狀聚亞醯胺其特性分析
Synthesis and Characterization of Hyperbranched Polyimides via Sequential Self-Repetitive Reaction (SSRR)
作者: 王中正
Wang, Chung-Cheng
關鍵字: hyperbranched polymer
Sequential Self-Repetitive Reaction
出版社: 化學工程學系所
引用: 1.Seiler, M., Fluid Phase Equilibria 2006, 241, 155. 2.Jikei, M.; Kakimoto, M. A., High Perform. Polym. 2001, 13, S33 3.Gao, C.; Yan, D., Prog. Polym. Sci. 2004, 29, 183. 4.Yates, C. R.; Hayes, W., Europ. Polym. J. 2004, 40, 1257. 5.Grayson, S. M.; Fréchet, J. M. J., Chem. Rev. 2001, 101, 3819. 6.Tomalia, D. A.; Baker, H.; J., D.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., Polym. J. 1985, 17, 117. 7.Hawker, C. J.; Fréchet, J. M. J., J. Am. Chem. Soc. 1990, 112, 7638. 8.Buhleier, E.; Wehner, W.; Vögtle, F. Synthesis 1978, 155. 9.Kim, Y. H.; Webster, O. W., Polym. Prepr. 1988, 29, 310. 10.Kim, Y. H.; Webster, O. W., J. Am. Chem. Soc. 1990, 112, 4592. 11.Long, T. E.; Riffle, J. S.; Ward, T. C.; Esker, A. R.; Turner, S. R., Synthesis and Characterization of Branched Macromolecules for High Performance Elastomers, Fibers, and Films, 2005. 12.Burgath, A.; Sunder, A.; Frey. H., Macromol. Chem. Phys. 2000, 201, 782. 13.Mezzenga, R.; Boogh, L.; Månson, J. A. E., Compos. Sci. Technol. 2001, 61, 787. 14.Sunder, A.; Mülhaupt, R.; Frey, H., Macromolecules 2000, 33, 309. 15.Voit, B., J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 2505. 16.Kim, Y. H., J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1685. 17.Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Ledu, M.; Grubbs, R. B., Science 1995, 269, 1080. 18.Suzuki, M.; Saegusa, A.; Li, T., Macromolecules 1992, 25, 7071. 19.Magnusson, H.; Malmstrom, E.; Hult. A., Macromol. Rapid. Commun. 1999, 20, 453. 20.Chang, H. T.; Fréchet, J. M. J., J. Am. Chem. Soc. 1999, 121, 2313. 21.Jikei, M.; Chon, S. H.; Kakimoto, M.; Kawauchi, S.; Imase, T.; Watanabe, J., Macromolecules 1999, 32, 2061. 22.Emrick, T.; Chang, H. T.; Frechet, J. M. J., Macromolecules 1999, 32, 6380. 23.Yan, D.; Gao, C., Macromolecules 2000, 33, 7693. 24.Gao, C.; Yan, D., Chem. Commun. 2001, 1, 107. 25.Thompson, D. S.; Makoski, L. J.; Moore, J. S., Macromolecules 1999, 32, 4764. 26.Yamanaka, K.; Jikei, M.; Kakimoto, M. A., Macromolecules 2001, 34, 3910. 27.Wu, F. I.; Shu, C. F., J. Poly. Sci., Part A: Poly. Chem. 2001, 39, 2536. 28.Chang, Y. T.; Shu, C. F.; Leu, C. M.; Wei, K. H., J. Poly. Sci., Part A: Poly. Chem. 2003, 41, 3726. 29.Fang, J.; Kita, H.; Okamoto, K. i., Macromolecules 2000, 33, 4639. 30.Chen, H.; Yin, J., J. Poly. Sci., Part A: Poly. Chem. 2002, 40, 3804. 31.Hao, J.; Jikei, M.; Kakimoto, M, A., Macromolecules 2002, 35, 5372. 32.Hao, J.; Jikei, M.; Kakimoto, M, A., Macromolecules 2003, 36, 3519. 33.Hao, J.; Jikei, M.; Kakimoto, M, A., Macromol. Symp. 2003, 199, 233. 34.Xu, K.; Economy, J., Macromolecules 2004, 37, 4146. 35.Gao, H.; Wang, D.; Guan, S.; Jiang, W.; Jiang, Z.; Gao, W.; Zhang, D.; Macromol. Rapid Commum. 2007, 28, 252. 36.Yan. D.; Gao. C., Macromolecules 2000, 33, 7693. 37.Gao. C.; Tang.W.; Yan. D.Y., J Polym Sci, Part A: Polym Chem 2002, 40, 2340. 38.Liu, Y.; Chung, T. S., J. Poly. Sci., Part A: Poly. Chem. 2002, 40, 4563. 39.Park, S. J.; Li, K.; Jin, F. L., Mater. Chem. Phys. 2008, 108, 214. 40.Kurzer, F.; Zadeh, K. D., Chem. Rev. 1967, 67, 107. 41.Williams, A., Ibrahim, I. T., Chem. Rev. 1981, 81, 589. 42.Monagle, J. J.; Campbell, T. W.; Mcshane, H. F., J. Am. Chem. Soc. 1962, 84, 4288. 43.Alberino, L. M.; Farrissey, W. J., U.S. Pat. 3,929,733, 1975. 44.Wagner, K.; Findeisen, K.; Schafer, W.; Dietrich, W., Angew. Chem. Int. Ed. 1981, 20, 819. 45.Detar, D. F.; Silverstein, R., J. Am. Chem. Soc. 1966, 88, 1013. 46.Wei, K. L.; Wu, C. H.; Huang, W. H.; Lin, J. J.; Dai, S. A. Macromolecules 2006, 39, 12. 47.Chen, C. W.; Cheng, C. C.; Dai, S. A., Mocromolecules 2007, 40, 8139. 48.Chang, H. L. ; Lin, H. L. ; Wang, Y. C.; Dai, S. A.; Su, W. C.; Jeng, R. J., Polymer 2007, 48, 2046. 49.Lin, H. L.; Chao, T. Y.; Shih, Y. F.; Dai, S. A.; Su, W. C.; Jeng, R. J., Polym. Adv. Technol. 2008, 19, 984. 50.Lin, H. L.; Chang, H. L.; Juang, T. Y.; Lee, R. H.; Dai, S. A.; Liu, Y. L.; Jeng, R. J., Dyes and Pigments 2009, 82, 76. 51.汪乙嘉,由 Poly(acylurea)中間體製備高溫穩定性之二次非線性光學聚醯胺-醯亞胺高分子及其特性分析,國立中興大學化學工程研究所碩士論文,2005. 52.魏寬良,利用連續自我反覆反應 (SSRR) 合成聚醯胺-醯亞胺以及聚醯亞胺並應用於“窄分子量分布聚醯胺”之發展,國立中興大學化學工程研究所博士論文,2008. 53.林訓廉,藉由連續自我反覆反應製備高溫熱穩定性光學高分子及其特性分析,國立中興大學化學工程研究所博士論文,2009. 54.Fang, J.; Tanaka, K.; Kita, H.; Okamoto, K. i., J. Poly. Sci., Part A: Poly. Chem. 2000, 38, 895. 55.Liu, Y. L.; Hsu, C, Y.; Wu, C. S., J. Appl. Polym. Sci., 2003, 89, 791. 56.Wang, T. S.; Lin, C. H., Polymer, 1999, 40, 747. 57.Cai, S. X.; Lin, C. H.; J. Poly. Sci., Part A: Poly. Chem. 2004, 42, 5921.
摘要: 近年來,超分枝聚合物 (hyperbranched polymer) 材料廣泛發展並應用於多種領域,主要原因為超分枝聚合物具有高度分枝的特點,如低黏度、高溶解度與末端多官能基等優點。而超分枝材料普遍面臨結構上,大量的分子末端造成低熱穩定性,因此,將具高熱穩定性之聚亞醯胺 (polyimide) 導入,製備出超分枝狀聚合物為此實驗要務。 過去文獻中,對於聚亞醯胺的研究,大部份是克服亞醯胺官能基低溶解性之缺點。為同時兼具高熱穩定性與低成本,本研究利用新型聚合方式-連續自我反覆反應,進行 A2B3 超分枝狀聚合物的製備。單體方面,藉由高產率的硝基取代、水解、脫水以及甲醇加成開環反應,自行製備出具高溶解特性之雙羧酸 (bicarboxylic acid) 官能基之反應單體與三羧酸 (tricarboxylic acid) 官能基之反應單體。高分子製備以雙異氰酸鹽 (4,4’-methylene diphenylisocyanate, MDI) 單體作為起始原料,利用氧化磷催化劑進行聚合,並添加雙羧酸或三羧酸單體,製備出中間體 polyacylureas,acylurea 結構提供材料高溶解性、高成膜性與良好加工性,對往後材料的後續加工有極佳的優勢。將 polyacylureas 進行連續自我反覆反應後,即可獲得線性或超分枝狀聚亞醯胺高分子。由於材料在固態高溫情況下進行反應,提昇材料的熱穩定性與抗溶劑性。因此,相較於一般文獻方式,新型連續自我反覆反應之材料,其熱性質有明顯的提昇。
In recent years, dendritic macromolecules have drawn considerable interest because of their unique physical and chemical properties, such as low solution viscosity, high solubility, and a large number of terminal functional groups. The hyperbranched feature would effectively suppress molecular motion. The resulted materials will certainly exhibit excellent processing capacity, which enable the fabrication of high quality thin films for applications. However, the thermal stability of hyperbranched polymers is often at issue. Aromatic polyimides are important commercial polymers possessing outstanding thermal stability along with other excellent properties. However, commercial applications for polyimides are often limited due to low solubility, poor processability, rigidity, and/or high viscosity even at high processing temperature. To overcome these shortcomings, a novel synthetic methodology of sequential self-repetitive reactions (SSRR) was used to prepare the polyimide consisting of hyperbranched conformation. This SSRR is based on aryl carbodiimide (CDI) chemistry. The diisocyanate group of 4,4'-methylene diphenylisocyanate was reacted to form a polycarbodiimide, and subsequently a triaromatic acid was reacted with the polycarbodiimide to obtain an intermediate, polyacylurea. The polyacylurea exhibited excellent organosolubility, which enabled the fabrication of high quality thin films. The acylurea moieties were then converted to imide structures via SSRR, and the Tgs of the hyperbranched polymers would be elevated significantly. For comparison, a biaromatic acid was used to prepare a linear polyimide using the similar methodology. Thermal stability of the hyperbranched polymers via SSRR were better than the one synthesized via the reaction of 4,4''-methylenedianiline and 1,1,1-Tris(4-carboxy-3-methoxycarbonylphenoxy)ethane. Moreover, high yields of the hyperbranched polyimides were also achieved in this work.
其他識別: U0005-1708200916264900
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.