Please use this identifier to cite or link to this item:
標題: 非線性光學超分枝狀聚天門冬亞醯胺/蒙托土奈米複合材料之合成及性質研究
Synthesis and Characterization of Nonlinear Optical Hyperbranched Polyaspartimide/Montmorillonite Nanocomposites
作者: 胡淑惠
Hu, Shu-Hui
關鍵字: nonlinear optics
出版社: 化學工程學系所
引用: 1. Huang, J. Y. The Operational Principles of Nonlinear Optical Characterizing Techniques., 1993. 2. Marder, S. R.; Perry, J. W. Science 1994, 263, 1706. 3. Gilmour, S.; Montgomery, R. A.; Marder, S. R.; Cheng, L.-T.; Jen, A. K.-Y.; Cai, Y.; Perry, J. W.; Dalton, L. R. Chem. Mater. 1994, 6, 1603. 4. Alain, V.; Thouin, L.; Blanchard-Desce, M.; Gubler, U.; Bosshard, C.; Gunter, P.; Muller, J.; Fort, A.; Barzoukas, M. Adv. Mater. 1999, 11, 1210. 5. Paloczi, G. T.; Huang, Y.; Yariv, A.; Luo, J.; Jen, A. K.-Y. Appl. Phys. Lett. 2004, 85, 1662. 6. Ulman, A.; Willand, C. S.; Kohler, W.; Robello, D. R.; Williams, D. J.; Handley, L. J. Am. Chem. Soc. 1990, 112, 7083 7. Meredith, G.; VanDusen, J.; Williams, D. Macromolecules 1982, 15, 1385. 8. Burland, D. M.; Miller, R. D.; Walsh, C. A. Chem. Rev. 1994, 94, 31. 9. Kajzar, F.; Lee, K.-S.; Jen, A. K.-Y. Adv. Polym. Sci. 2003, 161, 1. 10. Davey, M. H.; Lee, V. Y.; Wu, L. M.; Moylan, C. R.; Volksen, W.; Knoesen, A.; Miller, R. D.; Marks, T. J. Chem. Mater. 2000, 12, 1679. 11. Van den Broeck, K.; Verbiest, T.; Degryse, J.; Van Beylen, M .; Persoons, A.; Samyn, C. Polymer 2001, 42, 3315. 12. Hsiue, G. H.; Kuo, W. J.; Jeng, R. J. U.S. Pat. 2003, 6503998. 13. Xu, G.; Si, J.; Liu, X.; Yang, O.; Ye, P.; Li, Z.; Shen, Y. Opt. Commun. 1998, 153, 95. 14. Masse, C. E.; Conroy, J. L.; Cazeca, M.; Jiang, X. L.; Sandman, D. J. Kumar, J. J. Appl. Polym. Sci. 1996, 60, 513. 15. Marturunkakull, S.; Chenl, J. I.; Li, L.; Kumar, J.; Tripathy, S. K. Polym. Advan. Technol. 1996, 7, 303. 16. Choi, D. H.; Park, J. H.; Rhee, T. H.; Kim, N.; Lee, S-D. Chem. Mater. 1998, 10, 705. 17. Ma, H.; Jen, A. K. Y. Adv. Mater. 2001, 13, 1201. 18. Ma, H.; Liu, S.; Luo, J. D.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Adv. Funct. Mater. 2002, 12, 565. 19. Pereverzev, Y. V.; Prezhdo, O. V.; Dalton, L. R. Chem. Phys. Lett. 2003, 373, 207. 20. Luo, J. D.; Ma, H.; Jen, A. K. Y. C. R. Chimie 2003, 6, 895. 21. Luo, J. D.; Haller, M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, Y. Q.; Chen, B. Q.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y. J. Phys. Chem. B 2004, 108, 8023. 22. Mohlmann, G. R.; Horsthuis, H.; Otomo, A.; Stegeman, G. I. Polymer films obtained by DC-electric field and pure opticak Poling. 1994 In: Mohlmann, G. R. (ed) Nonlinear Optical properties of organic materials VⅡ. Proc SPIE, 2285, 300. 23. Normandin, R.; Stegeman, G. I. Appl. Phys. Lett. 1980, 36, 253. 24. Normandin, R.; Stegeman, G. I. Appl. Phys. Lett. 1982, 40, 759. 25. Minakata, M. Proc. SPIE 2001, 4352, 16. 26. Hao, J.; Jiang, L.; Cai, X. Polymer 1996, 37, 3721. 27. Chandra, R.; Rajabi, L. J. Macromol Sci. Rev Macromol Chem. 1997 C37, 61. 28. Bell, V. L.; Young, P. R. J. Polym. Sci. Part A: Polym. Chem. 1986, 24, 2647. 29. Wang, C. S.; Hwang, H. J. Polymer 1996, 37, 499. 30. Wu, C. S.; Liu, Y. L.; Chiu, Y. S. Polymer 2002, 43, 1773. 31. Liu, Y. L.; Tsai, S. H.; Wu, C. S.; Jeng, R. J. J. Polym. Sci. Polym. Chem. 2004, 42, 5921. 32. Hariharan, R.; Sarojadevi, M. J. Appl. Polym. Sci. 2008,108, 1126. 33. Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183. 34. Flory, P. J. J. Am. Chem. Soc. 1952, 74, 2718. 35. Kim, Y. H.; Webster O. W., J. Am. Chem. Soc. 1990, 112, 4592. 36. Kim, Y. H. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1685. 37. Voit, B. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 2505. 38. Inoue, K. Prog. Polym. Sci. 2000, 25, 453. 39. Jikei, M.; Kakimoto, M. Prog. Polym. Sci. 2001, 26, 1233. 40. Tomalia, D. A.; Fréchet, J. M. J. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2719. 41. Ma, H.; Chen, B.; Sassa, T. Dalton, ; L. R.; Jen, A. K-Y J. Am. Chem. Soc. 2001, 123, 986. 42. Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. J. Am. Chem. Soc. 2000, 122, 3174. 43. Bai, Y.; Song, N.; Gao, J. P.; Sun, X.; Wang, X.; Yu, G.; Wang, Z. Y. J. Am. Chem. Soc. 2005, 127, 2060. 44. Zhang, Y.; Wada, T.; Sasabe, H. Polymer 1997, 38, 2893. 45. Do, J. Y.; Park, S. K.; Ju, J. J.; Park, S.; Lee, M. H. Macromol. Chem. Phys. 2003, 204, 410. 46. Kang, S. H.; Luo, J.; Ma, H.; Barto, R. R.; Frank, C. W.; Dalton, L. R.; Jen, A. K.-Y. Macromolecules 2003, 36, 4355. 47. Do, J. Y.; Ju, J. J. Macromol. Chem. Phys. 2005, 206, 1326. 48. Li, Z.; Qin, A.; Lam, J. W. Y.; Dong, Y.; Ye, C.; Williams, I. D.; Tang, B. Z. Macromolecules 2006, 39, 1436. 49. Lebaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl Clay Sci. 1999, 15, 11. 50. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. 51. Van Olphen, H. An Introduction to Clay Colloid Chemistry, 2nd ed. Wiley, 1977. 52. Wu, W.; Wang, D.; Wang, P.; Ye, C. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 3598. 53. Chao, T. Y.; Chang, H. L.; Su, W. C.; Wu, J. Y.; Jeng, R. J. Dyes and Pigments 2008, 77, 515. 54. Zulfiqar, S; Ishaq, M.; Sarwar, M. I. Surf. Interface Anal. 2008, 40, 1195. 55. Chang, J. H.; Park, D. K.; Ihn, K. J. J. Appl. Polym. Sci. 2002, 84, 2294. 56. Tyan, H. L.; Wei, K. H.; Hsieh, T. E. J. Polym. Sci. Part B: Polym. Phys. 2000, 38, 2873. 57. Lin, C. H.; Cai, S. X.; Lin, C. H. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5971.
摘要: 本研究主要利用自行合成之A2及B3形式單體,製備一系列二次非線性光學超分枝狀高分子,並導入不同比例之有機改質蒙托土,藉以改善光學性質及熱穩定性。A2單體選用μβ值及熱性質較佳的發色團基bis(4-aminophenyl(4-(4-nitrophenyl)-diazenyl)phenyl)amine (DAC),而B3單體則選用具有高溫穩定性的含磷trimaleimide (Dopo-MI),兩者經由Michael addition反應得到有機可溶的超分枝狀聚天門冬亞醯胺 (hyperbranched polyaspartimide),其特有的三維立體結構能有效地將結構中的發色團基 (chromophore) 區隔開來,避免聚集現象產生,以提升材料的光電係數,並降低光學損失。此外,以含氟及含磷的三胺分子進行蒙托土 (montmorillonite) 的改質,再將此有機改質蒙托土導入超分枝狀聚天門冬亞醯胺中,可提升材料的熱穩定性。 研究成功製備超分枝狀聚天門冬亞醯胺,材料具有良好的有機可溶性且易加工成膜。由熱重分析 (thermogravimetric analyzer, TGA) 顯示,所合成一系列非線性光學材料的5 wt % 熱重損失之溫度約為272-373 ℃之間;玻璃轉移溫度約為192-240 ℃之間,顯示添加少量的有機改質蒙托土可使熱性質大幅提升。此外,這些超分枝狀聚天門冬亞醯胺與其有機/無機奈米複合材料亦具有極佳的電光係數及波導性質。其中,含氟的超分枝狀聚天門冬亞醯胺/蒙托土複合材料顯現最好的熱穩定性,其電光係數值 (electro-optic coefficient, r33) 為20.9 pm/V,光學損失值 (optical loss) 為3.0 dB/cm,且在100 ℃下、100小時的長時間熱處理後,光電係數值仍可維持在原來的73 % 左右。
In this research, the A2- and B3-type monomers were utilized to synthesize a series of second-order nonlinear optical (NLO) hyperbranched polymers possessing three-dimensional and void-rich topological structure, in which the spatial separation of chromophores endows the polymers with favorable site-isolation effect and avoids chromophoric aggregation. This would lead to improved optical properties and reduced optical loss. Furthermore, to enhance their thermal stability, organoclays prepared by modifying high aspect ratio silicate layers of montmorillonite (MMT) with two different swelling agents (F-triamine and P-triamine) were incorporated into the hyperbranched polymers. Hyperbranched polyaspartimides based on an azobenzene chromophore (bis(4-aminophenyl(4-(4-nitrophenyl)-diazenyl)phenyl)amine, DAC) and a phosphorous-containing trimaleimide (Dopo-MI), and polyaspartimide/montmorillonite nanocomposites were successfully synthesized via Michael addition reaction. These hyperbranched polymers and their organic/inorganic nanocomposites possess excellent thermal stability, relatively large electro-optic (EO) coefficients, and waveguide properties. Among all the samples, a fluorine-containing hyperbranched polyaspartimide/MMT sample exhibited the most excellent thermal stability. In addition, EO coefficient (r33) of 20.9 pm/V, and optical loss of 3.0 dB/cm were obtained for this sample. The EO coefficient retained approximately 73 % of its original value after 100 h thermal treatment at 100 ℃.
其他識別: U0005-1708200918301100
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.