Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3759
標題: PES/蒙脫土複合薄膜之製備與氣體輸送應用
Preparation of polyethersulfone/montmorillonite membranes for gas transport
作者: 吳振維
wu, Jhen-wei
關鍵字: polyethersulfone
蒙脫土
montmorillonite
gas transport
氣體滲透
複合薄膜
出版社: 化學工程學系所
引用: [1] H. Strathmann, Membrane separation processes, J. Membrane Sci., 9 (1981) 121. [2] H.J. Kim, S.S. Nah, R.M. Byoung, A new technique for preparation of PDMS pervaporation membrane for VOC removal, Advances in Environmental Research, 6 (2002) 255. [3] S. Mandal, V.G. Pangarkar, Separation of methanol-benzene and methanol-toluene mixtures by pervaporation: effects of thermodynamics and structural phenomenon, J. Membrane. Sci., 201 (2002) 175. [4] R.N. Lichtenthaler, Comparison of the separation of mixtures by vapor permeation and by pervaporation using PVA composite membranes. I. Binary alcohol-water systems, J. Membrane Sci., 68 (1992) 119. [5] K. Okamoto, N. Tanihara, H. Watanabe, Vapor permeation and pervaporation separation of water-ethanol mixtures through polyimide membranes, J. Membrane Sci., 68 (1992) 53. [6] G. Qunhui, H. Ohya, Y. Negishi, Investigation of the permselectivity of chitosan membrane used in pervaporation separation II. Influences of temperature and membrane thickness, J. Membrane Sci., 98 (1995) 223. [7] H.H. Nijhuis, M.H.V. Mulder, C.A. Smolders, Removal of trace organics from aqueous solutions. Effect of membrane thickness, J. Membrane Sci., 61 (1991) 99. [8] R.Y.M. Huang, R. Pal, G.Y. Moon, Crosslinked chitosan composite membrane for the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan/polysulfone composite membranes, J. Membrane Sci., 160 (1999) 17. [9] S.J. Doong, W.S. Ho, R.P. Mastondrea, Prediction of flux and selectivity in pervaporation through a membrane, J. Membrane Sci., 107 (1995) 129. [10] Z.H. Ping, Q.T. Nguyen, R. Clément, J. Néel, Pervaporation of water-ethanol mixtures through a poly(acrylic acid) grafted polyethylene membrane. Influence of temperature and nature of counter-ions, J. Membrane Sci., 48 (1990) 297. [11] K.M. Song, W.H. Hong, Dehydration of ethanol and isopropanol using tubular type cellulose acetate membrane with ceramic support in pervaporation process, J. Membrane Sci., 123 (1997) 27. [12] N. Rajagopalan, M. Cheryan, Pervaporation of grape juice aroma, J. Membrane Sci., 104 (1995) 243. [13] R. Jiraratananon, A. Chanachai, R.Y.M. Huang, D.Uttapap, Pervaporation dehydration of ethanol-water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes: I. Effect of operating conditions, J. Membrane Sci., 195 (2002) 143. [14] P. Moulin, T. Allouane, L. Latapie, C. Raufast, F.Charfir, Treatment and valorisation of an industrial effluent by pervaporation, J. Membrane Sci., 197 (2002) 103. [15] N. Inagaki, S. Tasaka, Y. Kobayashi, Pervaporation of ethanol-water mixture by plasma films prepared from hexamethyldisiloxane, Desalination, 70 (1988) 465. [16] R.Y.M. Huang, G.Y. Moon, R. Pal, N-acetylated chitosan membranes for the pervaporation separation of alcohol/toluene mixtures, J. Membrane Sci., 176 (2000) 223. [17] A.M. Urtiaga, E.D. Gorri, J.K. Beasley, I. Ortiz, Mass transfer analysis of the pervaporative separation of chloroform from aqueous solutions in hollow fiber devices, J. Membrane Sci., 156 (1999) 275. [18] M.L. Young, Y.N. Sang, Y.H. Seong, Pervaporation of water/isopropanol mixtures through polyaniline membranes doped with poly(acrylic acid), J. Membrane Sci., 159 (1999) 41. [19] R.-X. Liu, X.-Y. Qiao, T.-S. Chung, Dual-layer P84/polyethersulfone hollow fibers for pervaporation dehydration of isopropanol, J. Membrane Sci., 294 (2007) 103. [20] Y. Li, T.-S. Chung, Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation, J. Membrane Sci., 308 (2008) 128. [21]A.F. Ismail, T.D. Kusworo, A. Mustafa, Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent, J.Membrane Sci., 319 (2008) 306. [22] Y. Li, T.-S. Chung,, Z. Huang, S. Kulprathipanja, Dual-layer polyethersulfone (PES)/ BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation, J. Membrane Sci., 277 (2006) 28. [23] Y. Li, T.-S. Chung,, Z. Huang, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone(PES)-zeolite A mixed matrix membranes, J. Membrame Sci., 275 (2006) 17. [24]Y. Li, T.-S. Chung,, Z. Huang, S. Kulprathipanja, The effects of polymer chain rigidification,zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrixMembranes, J. Membrane Sci., 260 (2005) 45. [25]A.F. Ismail, R.A. Rahim,W.A.W.A. Rahman, Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation, Sep. Purif. Techol., 63(2008) 200. [26] G.C. Kapantaidakis , G.H. Koops, M. Wessling, Effect of spinning conditions on the structure and the gas permeation properties of high flux polyethersulfone polyimide blend hollow fibers, Desalination, 144 (2002) 121. [27]G.C. Kapantaidakis, G.H. Koops, High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation, J. Membrane Sci., 204 (2002) 153. [28] J.-J. Qin, T.-S. Chung, Effects of orientation relaxation and bore fluid chemistry on morphology and performance of polyethersulfone hollow fibers for gas separation, J. Membrane Sci., 229 (2004) 1. [29] Y. Liu, C. Cao, T.-S. Chung, K.P. Pramoda, Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation, J. Membrane Sci., 245 (2004) 53. [30] L. Jiang, T.-S. Chung, D.-F. Li, C. Cao, S. Kulprathipanja, Fabrication of Matrimid/ polyethersulfone dual-layer hollow fiber membranes for gas separation, J. Membrane Sci., 240 (2004) 91. [31] G.C. Kapantaidakis, G.H. Koops, High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation, J. Membrane Sci., 204 (2002) 153. [32] G.C. Kapantaidakis, G.H. Koops, M. Wessling, Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends, Desalination, 145 (2002) 353. [33]D.-F. Li, T.-S. Chung, R. Wang, Y. Liu, Fabrication of fluoropolyimide/ polyethersulfone (PES) dual-layer asymmetric hollow iber membranes for gas separation, J. Membrane Sci., 198 (2002) 211. [34] D. Wang, K. Li, W.K. Teo, Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive, J. Membrane Sci., 176 (2000) 147. [35]Y. Li and T.-S. Chung, Novel Ag+-Zeolite/Polymer Mixed Matrix Membranes with a High CO2/CH4 Selectivity, J. AIChE., 53 (2007) 3. [36] C.-R. Tseng, J.-Y. Wu, H.-Y. Lee, F.-C. Chang, Preparation and crystallization behavior of syndiotactic polystyrene-clay nanocomposites, Polymer 42 (2001) 10063. [37] T.H. Kim, L.W. Jang, D.C. Lee, H.J. Choi, M.S. Jhon, Synthesis and rheology of intercalated polystyrene/Na+-montmorillonite nanocomposites, Macromol. Rapid Commun. 23 (2002) 191. [38] Z. Zhang, N. Zhao, W. Wei, D. Wu, Y. Sun, Synthesis and characterization of poly(butyl acrylate-co-methyl methacrylate)/clay nanocomposites via emulsion polymerization, Int. J. Nanosci. 5 (2006) 291. [39] S. Filippi, E. Mameli, C. Marazzato, Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites, Eur. Polym. J. 43 (2007) 1645. [40] G. Clarizia, C. Algieri, E. Drioli, Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane, Polym. 45 (2004) 5671. [41] T.-Y. Tsai, C.-H. Li, C.-H. Chang,W.-H. Cheng, C.-L. Hwang, R.-J.Wu, Preparation of exfoliated polyester/clay nanocomposites, Adv. Mater. 17 (2005) 1769. [42] C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J. Membrane Sci. 206 (2002) 443. [43] R-Y Lin, B-S Chen, G-L Chen, J-Y Wu, H-C Chiu, S-Y Suen, Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption, J. Membrane Sci. 326 (2009) 117-129
摘要: 本研究利用相轉移法製備PES/蒙脫土(montmorillonite, MMT) 複合薄膜,第一部份使用摻混方法製備出PES/MMT複合薄膜,第二部分利用熱處理方法製備出T(PES/MMT) 複合薄膜,第三部分則使用改質的有機蒙脫土(O-MMT)製備PES/OMMT複合薄膜,第四部份則利用磺化PES(SPES)製備出SPES/OMMT複合薄膜。本研究並分析複合薄膜的相關性質:先測量其膜厚接近60 um/disc及膜重接近20 mg/disc證明增加蒙脫土沒有變化,進而量測離子交換容量、水含量可分析本研究所製備薄膜之親疏水性,再利用拉力測試儀觀察增加蒙脫土其拉力變化。此外,本研究亦利用寬角度X光繞射分析儀(WXRD)判斷蒙脫土於薄膜內其層間距的變化。另以掃描穿透式電子顯微鏡(FE-SEM)觀察薄膜截面的特徵型態。 在應用部分,本研究使用PES/MMT、T(PES/MMT)、PES/OMMT和SPES/MMT等四種複合薄膜進行CO2及CH4之氣體滲透程序。於氣體分離係數發現CO2/CH4大部分數值在0.4-1之間,由此判斷氣體滲透行為為Knudsen和Poiseuille。 但理論上蒙脫土添加越多導致的自由空隙越多,使得Poiseuill行為明顯,若Poiseuille明顯則導致氣體滲透跟二端壓力和呈線性成長。不過實際上趨勢卻不是如此。可能是有部分數據有問題,這些數據該重新去測試,找出實際趨勢。
PES/montmorillonite (MMT) composite membranes were successfully prepared by via phase inversion method in this study. The first approach (simple mixing) was to mix commercial PES polymer with Na+-MMT clays in solvent for membrane preparation. The second approach (thermal treatment) was to prepare the T(PES/Na+-MMT) composite membrane. The third approach (modification particles) was to prepare the PES/O-MMT composite membrane. The forth approach (Sulfonation of polyethersulfone) was to prepare the SPES/ Na+-MMT composite membrane. Membrane properties were characterized. The thickness and weight value were very close that about 60 um and 20 mg/disc at different feed MMT wt%. By measuring the cation-exchange capacity and water content that hydrophilicity of composite membranes was analyzed. Their composite membranes are tensile strength as MMT increased by tensile machine. Moreover, the X-ray diffractograms exhibited the change of interlayer spacing of MMT clays in the composite membrane. Membrane morphology was detected by scanning electron microscope. In their applicabilities, CH4 and CO2 permeability performance of there PES/MMT, T(PES/MMT), PES/OMMT and SPES/MMT composite membranes were investigated. In the gas separation factor value range was 0.4-1 that result may be explained Knudsen flow and Poiseuille flow. In the theory, when they added particles that significantly enhance poiseuille diffusion that depended linearly on the mean pressure, then gas permeability depended linearly on the mean pressure. In fact that tend did not conform to theory. The problem may be some data error, so we may be retest some data.
URI: http://hdl.handle.net/11455/3759
其他識別: U0005-1908200914432500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908200914432500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.