Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3763
標題: 探討Chitinibacter tainanensis 醱酵及其醱酵液應用於植物病原菌之拮抗測試
The study on Chitinibacter tainanensis Cultivation and the Application of Its Broth as an Antagonist to Plant Pathogens
作者: 黃功銘
Huang, Gong-Ming
關鍵字: Chitinibacter tainanensis
Chitinibacter tainanensis
chitinase
N-acetyl-glucosaminidase
antagonistic
幾丁質
幾丁質酵素
N-乙醯葡萄糖胺酶拮抗試驗
出版社: 化學工程學系所
引用: 1.黃建瑞與陳昭瑩, 植物的醫病良方-幾丁質分解性拮抗細菌, 科學發展, 2005. 391 p. 28-33. 2.Boyer, J.N., Aerobic and anaerobic degradation and mineralization of 14C-chitin by water column and sediment inocula of the York River estuary, Applied and Environmental Microbiology, 1994. 60 p. 174-179. 3.Cohen-Kupiec, R. and Chet, I., The molecular biology of chitin digestion, Current Opinion in Biotechnology, 1998. 9 p. 270-277. 4.Schroth, M.N. and Hancock, J.G., Selected topics in biological control weed control plant pathogens, Annual Review of Microbiology, 1981. 35 p. 453-476. 5.Baker, R., Mechanisms of biological control of soil-borne pathogens, Annual Review of Phytopathology, 1968. 6 p. 263-294. 6.Cook, R.J., Making greater use of introduced microorganisms for biological control of plant pathogens, Annual Review of Phytopathology, 1993. 31 p. 53-80. 7.Johnson, L.F. and Curl, E.A., Methods for Research on the ecology of soilborne plant pathogens, 1972. Minnesota: Burgess. 8.Dickinson, J.M., Hanson, J.R., and Truneh, A., Metabolites of some biological control agents, Pesticide science, 1995(44) p. 389-393. 9.Fravel, D.R., Role of antibiosis in the biocontrol of plant diseases, Annual Review of Phytopathology, 1988. 26 p. 75-91. 10.蘇遠志, 抗生素之定義及分類, 應用微生物學 1999, 華香園出版社 p. 797-802. 11.Lancini, G., Parenti, F., and Gallo, G.G., Antibiotics, 1995. New York: Plenum Press. 12.陳淙偉, Arthrobacter AB -10 細菌生產新型抗生物質之研究, 2005. 國立高雄大學, 生物科技研究所碩士論文, 高雄市 13.Yuan, W.M. and Crawford, D.L., Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots, Applied and Environmental Microbiology, 1995. 61(8) p. 3119–3128. 14.Crawford, D.L. and Suh, H.W., Use of Streptomyces WYEC 108 to control plant pathogens, United States, 1995. 15.Mahadevan, B. and Crawford, D.L., Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108, Enzyme and Microbial Technology, 1997. 20(7) p. 489-493. 16.Ordentlich, A., Elad, Y., and Chet, I., The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii, Phytopathology, 1988. 78 p. 84-88. 17.Someya, N., Kataoka, N., Komagata, T., Hirayae, K., Hibi, T., and Akutsu, K., Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2, Plant Disease, 2000. 84 p. 334-340. 18.Huang, C.J., Wang, T.K., Chung, S.C., and Chen, C.Y., Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9, Journal of Biochemistry and Molecular Biology, 2005. 38(1) p. 82-88. 19.Chang, W.T., Chen, Y.C., and Jao, C.L., Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes, Bioresource Technology, 2007. 98 p. 1224–1230. 20.Yu, T., Wang, L., Yin, Y., Wang, Y., and Zheng, X., Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit, International Journal of Food Microbiology, 2008. 122 p. 44-48. 21.石信德、黃振文與謝廷芳, 台灣生物植物保護製劑防治作物病害的研發與應用, 農業試驗所[特刊], 2006 p. 157-169. 22.黃國豪, 幾丁聚醣薄膜的製備及其性質之研究, 2004. 國立雲林科技大學, 化學工程系碩士論文, 雲林縣 23.沈家弘, 不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究, 2004. 私立東海大學, 食品科學研究所碩士論文, 台中市 24.徐世昌, 生物型高分子-「幾丁質及幾丁聚醣」之介紹與應用, 化工資訊, 2001. 15(2) p. 36-45. 25.江晃榮, 生體高分子(幾丁質、膠原蛋白)產業現況與展望, 1998. 臺灣: 財團法人生物技術開發中心. 26.Knorr, D., Use of chitinous polymers and food, Food Technology, 1984. 38 p. 85-97. 27.Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., and Bahl, H., Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48, Archives of Microbiology, 2001. 176 p. 421-426. 28.Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama, A., Muraki, E., Hiraga, K., Oda, K., and Aiba, S., Production of N-acetyl-D-glucosamine from alpha-chitin by crude enzymes from Aeromonas hydrophila H-2330, Carbohydrate Research, 2002. 17 p. 761-763. 29.Renata, L., Andrea, S., Luigia, C., Graziana, V., Giuseppe, d.A., and Melzi, d.E.G.V., Increased urinary N-acetyl-b-glucosaminidase (NAG) excretion in young insulin-dependent diabetic patients, Diabetes Research and Clinical Practice, 1995. 29 p. 99-105. 30.Keller, R.H. and Kirshenbaum, D.W., Method of treatment of glutathione deficient mammals, United States, 2001. 31.Suzuki, K., Mikami, T., Okawa, Y., Tokoro, A., Suzuki, S., and Suzuki, M., Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose, Carbohydrate Research, 1986. 151 p. 403-408. 32.楊學敏, 微生物幾丁質酶的研究和應用, 漳州職業技術學院學報, 2005. 7(1) p. 7-11. 33.Leah, R., Tommerup, H., Svendsen, I., and Mundy, J., Biochemical and molecular characterization of three barley seed proteins with antifungal properties, Journal of Biological Chemistry, 1991. 266(3) p. 1564-1573. 34.Deacon, J.W., Modern mycology, third 1997: Wiley-Blackwell. 35.Jung, W.J., Kuk, J.H., Kim, K.Y., Jung, K.C., and Park, R.D., Purification and characterization of exo-beta-D-glucosaminidase from Aspergillus fumigatus S-26, Protein Expression and Purification, 2006. 45 p. 125-131. 36.Wang, S.L., Shih, I.L., Liang, T.W., and Wang, C.H., Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium, Journal of Agricultural and Food Chemistry, 2002. 50 p. 2241-2248. 37.Hung, T.H., Chang, Y.M., Sung, H.Y., and Chang, C.T., Purification and characterization of hydrolase with chitinase and chitosanase activity from commercial stem bromelain, Journal of Agricultural and Food Chemistry, 2002. 50 p. 4666-4673. 38.Krishnaveni, S., Liang, G.H., Muthukrishnan, S., and Manickam, A., Purification and partial characterization of chitinases from sorghum seeds, Plant Science, 1999. 144 p. 1-7. 39.Nawani, N.N., Kapadnis, B.P., Das, A.D., Rao, A.S., and Mahajan, S.K., Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2, Journal of Applied Microbiology, 2002. 93 p. 965-975. 40.Nawani, N.N. and Kapadnis, B.P., Production dynamics and characterization of chitinolytic system of Streptomyces sp. NK1057, a well equipped chitin degrader, World Journal of Microbiology and Biotechnology, 2004. 20 p. 487-494. 41.Zhang, J.P., Chen, Q.X., Wang, Q., and Xie, J.J., Purification and some properties of β-N-Acetyl-D-glucosaminidase from viscera of green crab (Scylla serrata) Biochemistry (Moscow), 2006. 71 p. S55-S59. 42.Wang, S.L., Lin, C.L., Liang, T.W., Liu, K.C., and Kuo, Y.H., Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants, Bioresour Technology, 2008. 100 p. 316-323. 43.Imoto, T. and Yagishita, K., A simple activity measurement by lysozyme, Agricultural and Biological Chemistry, 1971. 35 p. 1154-1156. 44.Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry, 1959. 3 p. 426-428. 45.Tronsmo, A., Hjeljord, L., Klemsdal, S.S., K.M.Vaarum, Nordtveit, H.R., and Harman, G.E., Chtinolytic enzymes from the biocontrol agent Trichoderma harzianum, Chitin Enzymology, 1996. 2 p. 648-656. 46.Molano, J., Puran, A., and Cabib, E., A rapid and sensitive assay for chitinase using tritiated chitin, Analytical Chemistry, 1975. 83 p. 648-656. 47.Otakara, A.M. and Uchida, Y., Purification and some properties of chitinase from Vibrio sp., Journal of Fermentation and Biotechnology, 1979. 57 p. 169-177. 48.Ramirez, M.G., Avelizapa, L.I.R., Avelizapa, N.G.R., and Camarillo, R.C., Colloidal chitin stained with Remazol Brilliant Blue R, a useful substrate to select chitinolytic microorganisms and to evaluate chitinase, Journal of Microbiological Methods, 2004. 56 p. 213-219. 49.Wang, X., Ding, X., Gopalakrishnan, B., Morgan, T.D., Johnson, L., White, F.F., Muthukrishnan, S., and Kramer, K.J., Characterization of a 46 kDa insect chitinase from transgenic tobacco, Insect Biochemistry and Molecular Biology, 1996. 26 p. 1055-1064. 50.Felse, P.A. and Panda, T., Production of microbial chitinases : A revisit, Bioprocess Engineering, 2000. 23 p. 127-134. 51.Patil, R.S., Ghormade, V., and Deshpande, M.V., Chitinolytic enzymes: an exploration, Enzyme and Microbial Technology, 2000. 26(7) p. 473-483. 52.Russell J. Tweddell, Jabaji-Hare, S.H., and Charest, P.M., Production of chitinases and β-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani, Applied Environmental Microbiology, 1994. 60(2) p. 489-495. 53.Tagawa, K. and Okazki, K., Isolation and some culyural conditions of Streptomyces species which produce enzymes lysing Aspergillus niger cwll wall, Journal of Fermentation and Bioengineering, 1991. 71 p. 230-236. 54.Felse, P.A. and Panda, T., Self-directing optimization of parameters for extracelluar chitinase production by Trichoderma harzianum in batch mode, Process Biochemistry, 1999. 34 p. 563-566. 55.Omero, C., Horwitz, B., and Chet, I., A convenient fluorometric method for the detection of extracellular N-acetylglucosaminidase production by filamentous fungi, Journal of Microbiological Methods, 2001. 43(3) p. 165-169. 56.Khoury, C., Minier., M., Huynh, N.v., and Goffic, F.l., Optimal dissolved oxygen concentration for the production of chitinases by Serratia marcescens, Biotechnology Letters, 1997. 19 p. 1143-1146. 57.Pranav, V. and Deshpande, M.V., Chitinase production by Myrothecium verrucaria and its significance for fungal mycelia degradation, Journal of General and Applied Microbiology, 1989. 35 p. 343-350 58.Skujins, J.J., Potgieter, H.J., and Alexander, M., Dissolution of fungal cell walls by a streptomycete chitinase and beta-(1-3) glucanase, Archives of Biochemistry and Biophysics, 1965. 111(2) p. 358-364. 59.Vad, K., Mikkelsen, J.D., and Collinge, D.B., Induction, purification and characterization of chitinase isolated from pea leaves inoculated with Ascochyta pisi, Planta, 1991. 184 p. 24-29. 60.Hou, W.C., Chen, Y.C., and Lin, Y.H., Chitinase activity of sweet potato (Ipomoea batatas [L.] Lam var. Tainong 57), Botanical Bulletin of Academia Sinica, 1998 p. 93-97. 61.Yamamoto, Y., Fukunaga, Y., Aoyagi, H., and Tanaka, H., Purification and characteristics of chitinase secreted by cultured Wasabia japonica cells, Journal of Fermentation and Bioengineering, 1995. 80 p. 148-152. 62.Romaguera, A., Tschech, A., Bender, S., Plattner, J., and Diekmann, H., Protoplast formation by a mycolase from Streptomyces olivaceoviridis and purification of chitinases, Enzyme and Microbial Technology, 1993. 15 p. 412-417. 63.Anjani, K.J. and Panda, T., Studies on critical analysis of factors influencing improved production of protoplasts from Trichoderma reesei mycelium, Enzyme and Microbial Technology, 1992. 14 p. 241-248. 64.Cosio, I.G., Fisher, R.A., and Carroad, P.A., Bioconversion of shellfish chitin waste: waste pretreatment, enzyme production, process design, and economic analysis, Journal of Food Science, 2006. 47(3) p. 901-905. 65.Flach, J., Pilet, P.E., and Jolles, P., What’s new in chitinase research?, Experienta, 1992. 48 p. 701-716. 66.Davis, B. and Eveleigh, D.E., Chitosanases: occurrence, production and immobilization, In Chitin, Chitosan and Related Enzymes, J.P. Zikakis, Editor. 1984, Academic Press: New York. p. 161-179. 67.陳錦坤、陳盈臻、方炳勳、黃冬梨、李政誠與沈宏俊, Chitinibacter tainaneisis N - 乙醯葡萄糖胺酶之研究, 幾丁質幾丁聚醣研討會論文專輯, 2007b p. 263-266. 68.Chern, L.L., Stackebrandt, E., Lee, S.F., Lee, F.L., Chen, J.K., and Fu, H.M., Chitinibacter tainanensis gen. nov., sp. nov.,a chitin-degrading aerobe from soil in Taiwan, International Journal of Systematic and Evolutionary Microbiology, 2004. 54 p. 1387–1391. 69.Wang, S.Y., Moyne, A.L., Thottappilly, G., Wu, S.J., Locy, R.D., and Singh, N.K., Purification and characterization of a Bacillus cereus exochitinase, Enzyme and Microbial Technology, 2001. 28 p. 492–498. 70.Trinder, P., Determination of blood glucose using 4-amino phenazone as oxygen acceptor, Journal of Clinical Pathology, 1969. 22(2) p. 246. 71.Miller, G.L., Use of dinitrosalic acid reagent for determination of reducing sugar, Analytical Chemistry, 1959. 31 p. 426-428. 72.陳錦坤、方炳勳、林忠亮、蔡承佳、許清輝、廖權能、魏國銘、黃冬梨與吳奇生, 以共培養方式討論 Chittinibacter tainanensis 生產 N - 乙醯葡萄糖胺的作用機轉, 幾丁質幾丁聚醣研討會論文專輯, 2005b p. 173-177. 73.Luli, G.W. and Strohl, W.R., Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations, Appl Environ Microbiol, 1990. 56 p. 1004-1011. 74.Delgado, J. and Liao, J.C., Inverse flux analysis for reduction of acetate excretion in Escherichia coli, Biotechnology progress, 1997. 13 p. 361-367. 75.陳錦坤、陳盈臻、方炳勳、黃冬梨、李政誠與沈宏俊, 碳酸鈣對 Chittinibacter tainanensis 生產 N - 乙醯葡萄糖胺之影響, 幾丁質幾丁聚醣研討會論文專輯, 2007a p. 259-262. 76.Lee, D.C., Kim, G.J., Cha, Y.K., Lee, C.Y., and Kim, H.S., Mass production of thermostable D-hydantoinase by batch culture of recombinant Escherichia coli with a constitutive expression system, Biotechnology and Bioengineering, 1997. 56(4) p. 449-455. 77.Khan, A.K.P.R.H., Mishra, S., Rao, K.B.C.A., and Totey, S.M., Influences of yeast extract on specific cellular yield of ovine growth hormone during fed-batch fermentation of E. coli, Bioprocess Engineering, 2000. 22 p. 670-676. 78.Schiraldi, C., Martino, A., Acone, M., Lernia, I.D., Lazzaro, A.D., Marulli, F., Generoso, M., Cartenì, M., and Rosa, M.D., Effective production of a thermostable alpha-glucosidase from Sulfolobus solfataricus in Escherichia coli exploiting a microfiltration bioreactor, Biotechnology and Bioengineering, 2000. 70(6) p. 670-676. 79.陳錦坤、李亞螢、方炳勳、林忠亮、蔡承佳、許清輝、黃冬梨與吳奇生, 利用生物轉化法分解 β- chitin 生產 N - 乙醯葡萄糖胺之研究, 幾丁質幾丁聚醣研討會論文專輯, 2006b p. 160-163. 80.Trivedia, P., Pandey, A., and Palni, L.M.S., In vitro evaluation of antagonistic properties of Pseudomonas corrugata, Microbiological Research, 2008. 163 p. 329-336. 表目次 表2-1、抗生物質的種類、性質及菌種來源 7 表2-2、近幾年在微生物防治其成效 8 表2-3、台灣近年來運用微生物防治植物病害的案例 9 表2-4、一些甲殼類、昆蟲、軟體動物器官和真菌之幾丁質含量 11 表2-5、金屬離子對幾丁質酵素之影響 20 表3-1、Chitinibacter tainanensis BCRC17254的基本性質 25 表3-2、Chitinibacter tainanensis培養基配方 27 表3-3、DNS試劑之組成 36 表3-4、病原菌菌種與編號對照表 37 表4-1、R培養基之配方 42 表4-2、三明治法篩選病原菌抑菌結果 49 表4-3、不同培養基之酵素液拮抗能力比較 50 表4-4、共培養之酵素液拮抗能力比較 53 表4-5、不同化學品添加對酵素活性影響 59 表4-6、透析處理對抑菌率的影響 61 表4-7、滅菌後不同程序對抑菌率的影響 62 表4-8、不同培養時間對抑菌率的影響 63 圖目次 圖2-1、全球農業市場的概況 3 圖2-2、幾丁質與幾丁聚醣結構圖 12 圖2-3、α型幾丁質之立體結構 13 圖2-4、β型幾丁質之立體結構 13 圖2-5、幾丁質三種型 14 圖2-6、N-乙醯葡萄糖胺結構 15 圖2-7、由幾丁質或幾丁聚醣製備N-乙醯幾丁寡醣流程圖 17 圖2-8、一般真菌細胞壁組成 19 圖2-9、幾丁質藉由幾丁酵素進行生物轉化為單細胞蛋白之程序 23 圖2-10、幾丁質分解酵素完全水解幾丁質之途徑 24 圖3-1、培養基效應實驗流程 29 圖3-2、拮抗試驗流程 29 圖3-3、菌體濃度檢量線 31 圖3-4、幾丁質酵素活性之校正曲線 32 圖3-5、N-乙醯葡萄醣胺酶標準檢量線 34 圖3-6、葡萄糖分析檢量線 35 圖3-7、DNS與還原醣之反應式 36 圖3-8、N-乙醯葡萄醣胺標準品濃度對吸光值之校正曲線 37 圖3-9、糖度劑分析N-乙醯葡萄醣胺分析檢量線 39 圖4-1、菌種培養於不同量葡萄糖對生長之影響 41 圖4-2、C. tainanensis在不同氮源與碳酸鈣含量對菌體生長的影響 43 圖4-3、C. tainanensis生長曲線變化(酵素活性, pH和CFU/mL) 45 圖4-4、培養過程糖度變化之時間圖 46 圖4-5、水稻紋枯病(Rhizoctonia solani)之對峙實驗 47 圖4-6、水稻秧苗立枯病(Sclerotium rolfsii)之對峙試驗 48 圖4-7、以CYB培養C. tainanensis 酵素液之抑菌試驗 51 圖4-8、以BHB培養C.tainanensis 酵素液之抑菌試驗 52 圖4-9、共培養之酵素液之抑菌試驗 54 圖4-10、C.tainanensis 以CYB培養酵素液對病原菌生長速率影響 56 圖4-11、共培養之酵素液對病原菌生長速率影響 57 圖4-12、抗生物質經透析程序對拮抗效果之影響 61 圖4-13、高溫高壓滅菌對拮抗效果之影響 62 圖4-14、培養時間對拮抗效果之影響 63
摘要: 本研究以幾丁質為碳源,使用Chitinibacter tainanensis菌種生產幾丁質酵素與N-乙醯葡萄糖胺酶,將幾丁質分解為幾丁寡醣以及N-乙醯葡萄糖胺。培養基篩選時,以yeast extract為氮源時,菌體濃度可達到 1.88 g/L。因培養過程中pH下降會造成菌體停止生長或死亡,藉由添加碳酸鈣4g/L當做緩衝,將醱酵液pH維持於5以上,菌量可達2.45g/L。使用修飾後含幾丁質之培養基可生產幾丁質酵素 13.2mU/mL、N-乙醯葡萄糖胺酶558.3mU/mL,醱酵液中幾丁質分解N-乙醯葡萄糖胺量為16g/L。 將醱酵液離心所得菌體,經由50 mM Tris-HCl,pH7.4,於超音波震盪10 min ,並去除菌體後,所得上清液中含幾丁質酵素7.17 mU/ml與N-乙醯葡萄糖胺酶558.3 mU/ml,證明菌體沈澱物中帶有幾丁質酵素與N-乙醯葡萄糖胺酶,添加金屬離子嘗試改變酵素活性的表現,結果顯示N-乙醯葡萄醣胺酶活性受到5 mM二價金屬離子,如Cu2+、Ca2+、Mg2+、Zn2+、Co2+、Ni2+及 Mg2+抑制N-乙醯葡萄糖胺酶,幾丁質酵素受金屬離子抑制影響較小,Na2SO4則有助於幾丁質酵素與N-乙醯葡醣胺酶的活性表現,比較控制組幾丁質酵素與N-乙醯葡萄醣胺酶活性,為原來酵素活性之193.80%和137.22%。另外,於EDTA 存在下,酵素活性也提升。 將Chitinibacter tainanensis醱酵培養之上清液,用於農作物拮抗病原菌,發現醱酵液對水稻秧苗立枯病(Sclerotium rolfsii)有明顯之抑菌能力,其效率達78%。經由進一步方法證實,醱酵液中所含之幾丁質酵素、N-乙醯葡萄醣胺酶和糖度皆非產生拮抗之物質。推測應該有其他分子量小於1kDa的物質為其抑菌之主要成分,且此物質經由高溫高壓之操作條件,仍可保有其抑菌活性。
In this study, the fermentation of Chitinibacter tainanensis was carried out to produce chitinase and N-acetyl-glucosaminidase (NAGase) and to evaluate their effects on the antagonistic effect against plant pathogens. It was found that when using yeast extract as the nitrogen sources and calsium carbonate as the buffer salt, the cell mass would reach at 2.54 g/L. Meanwhile, by using chitin as the carbon source, the chitinase and N-acetyl-glucosaminidase would reach 13.2 mU/mL and 558.3 mU/mL in the supernatant of the harvested broth, respectively. It was observed that the cell precipitate of the broth still reserved chitinase and N-acetyl-glucosaminidase activities. Accordingly, 50 mM Tris buffer (pH7.4) was used to wash out the residual enzymes activities from the cells. The result showed that 7.17 mU/ml of chitinase and 558.3 mU/ml of NAGase can be obtained under a 10-min sonication. It was found that Na2(SO)4 increased the chitinase and NAGase activity for 193.80% and 137.22% respectively, but Cu2+, Ca2+, Mg2+, Zn2+, Co2+, Ni2+ and Mg2+ inhibited NAGase activity. To test the effect of these collected solutions to the antagonistic effects against plant pathogens, various microorganisms were used in the tests. It was found that the supernatant displayed a significant inhibitive effect on Scherotium rolfsii. Whereas, the washing-out buffer containing enzymes showed no antagonistic effect. This result proved that the antagonistic effect of the broth was due to some unknown chemicals and not from chitinase and N-acetyl-glucosaminidase. Further investigations should be performed to reveal the compounds and mechanisms about this antagonistic effect of the fermentation broth. The supernatant obtained at 48 hour had inhibition ratio of 78%, and that obtained at 24 hour gave an 83% inhibition ratio.
URI: http://hdl.handle.net/11455/3763
其他識別: U0005-2007200920175900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200920175900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.