Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3767
標題: 以化學鍍法成長白金薄膜及其於染料敏化太陽能電池之應用
Fabrication of Platinum Thin Film by Chemical Deposition and Its Application in Dye-Sensitized Solar Cells
作者: 陳嘉賢
Chen, Chia-Hsien
關鍵字: Chemical Deposition
化學鍍
Dye-Sensitized Solar Cells
染料敏化太能電池
出版社: 化學工程學系所
引用: 1. M. Grätzel, “Photoelectrochemical cells”, Nature, Vol. 414(15), pp. 338-344 (2001). 2. M. A. Green, “Silicon solar cells: evolution, high-efficiency design and efficiency enhancements”, Semiconductor Science and Technology, Vol. 8, pp. 1-12 (1993). 3. A. J. Waldau, “Status of thin films solar cells in research, production and the market”, Solar Energy, Vol. 77, pp. 667-678 (2004). 4. B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, pp.737-740 (1991). 5. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, Journal of the American Chemical Society, Vol. 115, pp. 6382-6390 (1993). 6. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, Journal of the American Ceramic Society, Vol. 80(12), pp. 3157-3171 (1997). 7. A. Kay, and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials and Solar Cells, Vol. 44, pp. 99-117 (1996). 8. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, Journal of the American Chemical Society, Vol. 123, pp. 1613-1624 (2001). 9. M. Grätzel, “Dye-seneitized solar cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153 (2003). 10. R. Komiya, L. Han, R. Yamanaka, A. Islam, and T. Mitate, “Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 123-127 (2004). 11. http://www.solarserver.de/wissen/photovoltaik-e.html 12. 蔡進譯,“超高效率太陽能電池-從愛因斯坦的光電效應談起”,物理雙月刊,27卷5期,pp. 701-719 (2005). 13. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, Vol. 25, pp. 676-677 (1954). 14. A. Geoetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook”, Materials Science and Engineering R: Reports, Vol. 40, pp. 1-46 (2003). 15. J. Zhao, A. Wang, and M. A. Green, “19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, Vol. 73, pp. 1991-1993 (1998). 16. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin Film Solar Cells”, Science , Vol. 285(30), pp. 692-698 (1999). 17. A. Geoetzberger, J. Luther, and G. Willeke, “Solar cells: past, present, future”, Solar Energy Materials and Solar Cells, Vol. 74, pp. 1-11 (2002). 18. V. Parente, J. Goldemberg, and R. Zilles, “Comments on Experience Curves for PV Module”, Progess in Photovoltaics: Research and Applications, Vol. 10, pp. 571-574 (2002). 19. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, “Solar Cell Efficiency Tables(Version 25)”, Progess in Photovoltaics: Research and applications, Vol. 11, pp. 49-54 (2005). 20. H. Meier, “Sensitization of Electrical Effects in Solids”, Journal of Physical Chemistry, Vol. 69, pp. 719- 729 (1965). 21. R. Memming and H. Tributsch, “Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes”, Journal of Physical Chemistry, Vol. 75, pp. 562-570 (1971). 22. M. Grätzel, “Converion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 3-14 (2004). 23. K. Kalyanasundaram and M. Grätzel, “Application of functionalized transition metal complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, Vol. 177, pp. 347-414 (1998). 24. P. M. Sommeling, M. Späth, J. Kroon, R. Kinderman, and J.van Roosmalen, “Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, Proceedings of the 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, 1–5 May, (2000). 25. F. Pichot, J. R. Pitts, and B. A. Gregg, “Low-Temperature Sinter of TiO2 Colloids: Application to Flexible Dye-Sensitized Solar Cells”, Langmuir, Vol. 16, pp. 5626-5630 (2000). 26. N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, Journal of Physical Chemistry B, Vol. 104, pp. 8989-8994 (2000). 27. A. Hagfeldt, B. Didrisksson, T. Palmqvist, H. Lindstrom, S. Sodergren, H. Rensmo, and S. Lindquist, “Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films”, Solar Energy Materials and Solar Cells, Vol. 31, pp. 481-488 (1994). 28. M. M. Gömez, J. Rodrigueza, S. E. Lindquist, and C. G. Granqvist, “Photoelectrochemical studies of dye-sensitized polycrystalline titanium oxide thin films prepared by sputtering”, Thin Solid Films, Vol. 342, pp. 148-152 (1999). 29. M. M. Gömez, J. Lu, E. Olsson, A. Hagfeldt, and C. G. Granqvist, “High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films”, Solar Energy Materials and Solar Cells, Vol. 64, pp. 385-392 (2000). 30. M. OKuya, K. Nakade, and S. Kaneko, “Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol. 70, pp. 425-435 (2001). 31. S. Lee, Y. Jun, K. J. Kim, and D. Kim, “Modification of electrodes in nanocrystalline dye-sensitized TiO2 solar cells”, Solar Energy Materials and Solar Cells, Vol. 65, pp. 193-200 (2001). 32. A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics”, Account of Chemical Research, Vol. 33, pp. 269-277 (2000). 33. M. KNazzeruddin, R. H. Baker, P .Liska, and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, Journal of Physical Chemistry B, Vol. 107, pp. 8981-8987 (2003). 34. M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry, Vol. 44, pp. 6841-6851 (2005). 35. G.. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol. 70, pp. 85-101 (2001). 36. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, and M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, Journal of the electrochemical Society, Vol. 143, pp. 3099-3108 (1996). 37. A. Stanley, B. Verity, and D. Matthews, “Minimizing the dark current at the dye-sensitized TiO2 electrode”, Solar Energy Materials and Solar Cells, Vol. 52, pp. 141-154 (1998). 38. N. Papageorgiou, W. F. Maier, and M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, Journal of the Electrochemical Society, Vol. 144, pp. 876-884 (1997). 39. G. Wang, Y. Lin, X. Xiao, X. Li, and W. Wang, “X-ray photoelectron spectroscopy analysis of the stability of platinized catalytic electrodes in dye-sensitized solar cells”, Surface and Interface Analysis, Vol. 36, pp. 1437-1440 (2004). 40. T. C. Wei, C. C. Wan, and Y. Y. Wang, “Platinum/titanium bilayer deposited on polymer film as efficient counterelectrodes for plastic dye-sensitized solar cells”, Applied Physics Letters, Vol. 90, pp. 153122-1 - 153122-3 (2007). 41. G. Wang, R. Lin, Y. Lin , X. Li, X. Zhou, and X. Xiao, “A novel high-performance counter electrode for dye-sensitized solar cells”, Electrochimica Acta, Vol. 50, pp. 5546-5552 (2005). 42. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, “Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells”, Electrochimica Acta, Vol. 51, pp. 3814-3819 (2006). 43. S. S. Kim, K. W. Park , J. H. Yum, and Y. E. Sung, “Dye-sensitized solar cells with Pt–NiO and Pt–TiO2 biphase counter electrodes”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 189, pp. 301-306 (2007). 44. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 179-182 (2004). 45. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol. 79, pp. 459-469 (2003). 46. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 153-157 (2004). 47. H. Pettersson and T. Gruszecki, “Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods”, Solar Energy Materials and Solar Cells, Vol. 70, pp. 203-212 (2001). 48. P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, and J. M. Kroon, “Long-term stability testing of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 137-144 (2004). 49. G. Smestad, C. Bignozzi, and R. Argazzi, “Testing of dye sensitized TiO 2 solar cells I: Experimental photocurrent output and conversion efficiencies”, Solar Energy Materials and Solar Cells, Vol. 32, pp. 259-272 (1994). 50. T. Ma, X. Fang, M. Akiyama, K. Inoue ,H. Noma, and E. Abe, “Properties of several types of novel counter electrodes for dye-sensitized solar cells”, Journal of Electroanalytical Chemistry, Vol. 574, pp. 77-83 (2004). 51. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, “Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells”, Thin Solid Films, Vol. 472, pp. 242-245 (2005). 52. K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, “The superiority of Ti plate as the substrate of dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol. 91, pp. 1176-1181 (2007). 53. C. R. K. Rao and M. Pushpavanam, “Electroless deposition of platinum on titanium substrates”, Materials Chemistry and Physics, Vol. 68, pp. 62-65 (2001). 54. A. J. Bard and L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John-Wiley & Sons, U. S. A. 55. S. A. Nosier and S. A Sallam, “Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder,” Separation and Purification Technology, Vol. 18, pp.93-101 (2000). 56. T. C. Wei, C. C. Wan, Y. Y. Wang, C. M. Chen, and H. S. Shiu, “Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum anoclusters on Indium-Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells”, Journal of Physical Chemistry C, Vol. 111, pp. 4847-4853 (2007). 57. P. Li, J. Wu , J. Lin, M. Huang, Z. Lan, and Q. Li, “Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode”, Electrochimica Acta, Vol. 53, pp. 4161-4166 (2008).
摘要: 由瑞士學者M. Grätzel提出”染料敏化太陽能電池(Dye-sensitized Solar Cell, DSSC)”之設計概念,大幅地降低太陽能電池之製造成本,同時能量轉化效率值可達商業化使用之等級,因而引起廣泛之討論。染料敏化太陽能電池由染料敏化之二氧化鈦光電極、白金對電極、以及包含碘離子之電解質所組成。 白金薄膜對電極通常由濺鍍法將白金沈積在透明導電玻璃上,但此法需要在高真空環境下進行,製作成本高昂;熱裂解法是另外一種常用的白金薄膜製備方式,以噴塗法或是旋轉塗佈方式將含白金離子溶液塗佈在基材上,進行400℃燒結而成,但高溫會對於軟性基材(如高分子基材)會產生破壞而限制基材的選用。 以薄金屬片作為對電極之基材,與傳統使用之透明導電玻璃相比,金屬片具有較低的材料成本與十分優良之電子傳導特性。在銦錫氧化物導電玻璃(tin-doped indium oxide, ITO glass)與金屬基材(如:不鏽鋼、鎳)無電鍍白金應用於染料敏化太陽能電池,不同於傳統白金薄膜沈積方式,無電鍍具有低溫且製程簡易,在工業界易於大規模生產,這是傳統之濺鍍白金薄膜與熱裂解白金所無法做到的。 以鎳金屬片無電鍍白金對電極組裝染料敏化太陽能電池,可以得到最高的能源轉化效率7.29%,略高於不鏽鋼金屬片無電鍍白金對電極(6.35%)、ITO導電玻璃無電鍍白金對電極(6.46%)以及濺鍍白金對電極(5.58%),無電鍍白金可以用相同甚至更低之白金負載量達成濺鍍白金對電極之能源轉化效率。無電鍍白金薄膜具較濺鍍白金高之粗糙度,可以有效提高對電極之催化面積,以加速電解質中的三碘離子的還原反應,減少對電極上的能源損失。
The dye-sensitized solar cells (DSCs) have attracted much attention in transferring clean solar energy to electricity because of their low cost, easy production and relatively high efficiency. A dye-sensitized solar cell generally composed of a dye-modified TiO2 photoelectrode, a Pt counter electrode, and an electrolyte containing a redox couple (I−/I3−) is an alternative device to conventional silicon solar cells. Sputtering is used to deposit a thin Pt layer on the transparent conducting oxide (TCO) glass. However, it is an ultrahigh vacuum process which is not cost efficient. Thermal deposition is also commonly employed to grow a thin Pt layer by spreading a drop of precursor solution on a TCO glass substrate, followed by annealing at 400℃. However, it requires a high-temperature annealing which restrains its further application in some temperature-sensitive substrates like plastic boards. Thin metallic sheets were also employed to serve as the substrates of counterelectrode for DSSCs. Compared with the commonly used TCO glass, metallic substrates have superiority in the material cost and electrical conduction capability. A platinum (Pt) layer was electroless-deposited on indium tin oxide (ITO) glass substrate and metal sheet as the counterelectrode for dye-sensitized solar cells. Compared with other methods of depositing Pt layer, electroless deposition is simple, low-temperature, and easy to scale-up for industrial application. Cells fabricated with a nickel sheet electroless-Pt counter electrode showed a higher conversion efficiency of 7.29% compared to cells fabricated with SUS304 sheet electroless-Pt (6.35%), ITO glass electroless-Pt (6.46%), and sputtered-Pt (5.58%) electrodes. This enhancement was attributed to increases in the effective surface area and good catalytic properties for I3− reduction. This DSSC also exhibits energy conversion efficiency better than that based on conventional sputtered Pt counterelectrode with a similar Pt loading even lower Pt loading. The promotion of cell efficiency is attributable to the porous structure of electroless-deposited Pt layer which can provide larger active surface area for triiodide reduction on the Pt/electrolyte interface.
URI: http://hdl.handle.net/11455/3767
其他識別: U0005-2108200913134200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200913134200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.