Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3769
標題: 化學添加劑對於化學方法製備銅奈米顆粒及銅薄膜於聚亞醯胺上之特性研究
Studies of Chemical Additives on Chemical Formation and Characterization of Cu Nanoparticles and Cu thin film on Polyimide
作者: 廖國良
Liao, Guo-Liang
關鍵字: Polyimide (PI)
聚亞醯胺
Wet process
Electroless Copper Deposition
chemical additives
Nanoparticles
濕製程
無電電鍍銅
化學添加劑
奈米粒子
出版社: 化學工程學系所
引用: 1. K. Gilleo, “FC Fab’s History of the Printed Circuit Chapter on Flex Circuit”, March, 2003. 2. J. Fjelstad, “Flexible Circuit Technology”, 3rd ed, BR Publishing, Oregon, 2006. 3. 林定皓,“軟性電路板技術”,台灣電路板協會,民國92年。 4. 林振華,“高密度軟性電路板入門”,全華科技圖書股份有限公司,民國89年。 5. M. K. Ghosh, K. L. Mittal, “Polyimide Fundamentals and Application”, Maecel Dekker, New York, 1996. 6. 金進興,“高密度軟性基板材料與應用”,工業材料雜誌,第175期,民國90年。 7. 張麗敏、曾詩存,“高精密塗佈技術之極致應用—可撓式銅箔基板”,工業材料雜誌,第219期,民國94年。 8. 莊坤儒,“軟性銅箔基板之近況”,電路板會刊,第25期,民國93年。 9. 金進興,“無接著劑之軟性材料”,電路板會刊,第11期,民國90年。 10. J. H. Hong, Y. Lee, S. Han, K. J. Kim, “Improvement of Adhesion Properties for Cu Films on the Polyimide by Plasma Source Ion Implantation”, Surface & Coating Technology, 2006, 201, 197. 11. J. H. Das, J. E. Morris, “Diffusion and Self-Gettering of Ion-Implanted Copper in Polyimide”, Journal of Applied Physics, 1989, 66, 5816. 12. S. Bhansali, D. K. Sood, “A Novel Technique for Fabrication of Metallic Structures on Polyimide by Selective Electroless Copper plating Using Ion Implantation”, Thin Solid Films, 1995, 270, 489. 13. D. Chena, Y. Lia, Q. Lua, J. Yina, Z. Zhu, “Selective Silver Seeding on Laser Modified Polyimide for Electroless Copper Plating”, Applied Surface Science, 2005, 246, 167. 14. H. Niino, A. Yabe, “Excimer Laser Polymer Ablation: Formation of Positively Charged Surfaces and Its Application into the Metallization of Polymer Films”, Applied Surface Science, 1993, 69, 1. 15. H. Yang, C. T. Pan, “Excimer Laser-Induced Formation of Metallic Microstructures by Electroless Copper Plating”, Journal of Micromechanics and Microengineering, 2002, 12, 157. 16. K. W. Lee, S. P. Kowalczyk, J. M. Shaw, “Surface Modification of PMDA-ODA Polyimide:Surface Structure-Adhesion Relationship”, Macromolecules, 1990, 23, 2097. 17. R. R. Thomas, “Wetting Kinetics Study of Modified Polyimide Surfaces Containing Ionizable Functional Groups”, Langmuir, 2003, 19, 5763. 18. L. E. Stephans, A. Myles, R. R. Thomas, “Kinetics of Alkaline Hydrolysis of a Polyimide Surface”, Langmuir, 2000, 16, 4706. 19. H. Okumura, T. Takahagi, N. Nagai, S. Shingubara, “Depth Profile Analysis of Polyimide Film Treated by Potassium Hydroxide”, Journal of Polymer Science:Part B:Polymer Physics, 2003, 41, 2071. 20. K. Akamatsu, S. Ikeda, H. Nawafune, “Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers”, Langmuir, 2003, 19, 10366. 21. Y. Li, Q. Lu, X. Qian, Z. Zhu, J. Yin, “Preparation of Surface Bound Silver Nanoparticles on Polyimide by Surface Modification Method and Its Application on Electroless Metal Deposition”, Applied Surface Science, 2004, 233, 299. 22. S. Qi, Z. Wu, D. Wu, R. Jin, “Controlled Formation of Optically Reflective and Electrically Conductive Silvered Surfaces on Polyimide Film Via a Direct Ion-Exchange Self-Metallization Technique Using Silver Ammonia Complex Cation as the Precursor”, Journal of Physical Chemistry B, 2008, 112, 5575. 23. S. Ikeda, K. Akamatsu, H. Nawafune, “Direct Photochemical Formation of Cu Patterns on Surface Modified Polyimide Resin”, Journal of Materials Chemistry, 2001, 11, 2919. 24. K. Akamatsu, S. Ikeda, H. Nawafune, S. Deki, “Surface Modification-Base Synthesis and Microstructural Tuning of Nanocomposite Layers:Monodispersed Copper Nanoparticles in Polyimide Resins”, Chemistry of Materials, 2003, 15, 2488. 25. K. Akamatsu, S. Ikeda, H. Nawafune, H. Yanagimoto, “Direct Patterning of Copper on Polyimide Using Ion Exchangeable Surface Templates Generated by Site-Selective Surface Modification”, Journal of the American Chemical Society, 2004, 126, 10822. 26. S. Ikeda, K. Akamatsu, H. Nawafune, T. Nishino, S. Deki, “Formation and Growth of Copper Nanoparticles from Ion-Doped Precursor Polyimide Layers”, Journal of Physical Chemistry B, 2004, 108, 15599. 27. K. Akamatsu, H. Shinkai, S. Ikeda, S. Adachi, H. Nawafune, S. Tomita, “Controlling Interparticle Spacing among Metal Nanoparticles through Metal-Catalyzed Decomposition of Surrounding Polymer Matrix”, Journal of the American Chemical Society, 2005, 127, 7980. 28. S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, “Copper/Polyimide Heterojunctions:Controlling Interfacial Structures through an Additive-Based, All-Wet Chemical Process Using Ion-Doped Precursors”, Advanced Functional Materials, 2007, 17, 889. 29. S. Tomita, P. E. Jonsson, K. Akamatsu, H. Nawafune, H. Takayama, “Controlled Magnetic Properties of Ni Nanoparticles Embedded in Polyimide Films”, Physical Review B, 2007, 76, 174432. 30. Y. S. Hsiao, W. T. Whang, S. C. Wu, K. R. Chuang, “Chemical Formation of Palladium-Free Surface-Nickelized Polyimide Film for Flexible Electronics”, Thin Solid Films, 2008, 516, 4258. 31. S. S. Yoon, D. O. Kim, S. C. Park, Y. K. Lee, H. Y. Chae, S. B. Jung, J. D. Nam,“Direct Metallization of Gold Patterns on Polyimide Substrate by Microcontact Printing and Selective Surface Modification”, Microelectronic Engineering, 2008, 85, 136. 32. 周森,“複合材料—奈米‧生物科技”,全威圖書有限公司,民國93年。 33. 莊萬發,“無電解鍍金—化學鍍金技術”,復漢出版社,民國85年。 34. 逢板哲爾,“化學反應製造金屬薄膜”,表面處理工業雜誌,第3期,民國85年。 35. M. Paunovic, “Electrochemical Aspects of Electroless Deposition of Metals”, Plating, 1968, 55, 1161. 36. F. L. Shippey, F. M. Donahue, “Kinetics of Electroless Copper Plating I.Empirical Rate Law”, Plating, 1973, 60, 43. 37. A. Hung, “Electroless Copper Deposition with Hypophosphiteas Reducing Agent”, Plating and Surface Finishing, 1988, 1, 62. 38. Y. Shacham-Diamand, S. Lopatin, “Integrated Electroless Metallization for ULSI”, Electrochimica Acta, 1999, 44, 3639. 39. J. Bielinski, K. Kaminski, “Inorganic Compounds in Electroless Copper Deposition”, Surface and Coatings Technology, 1987, 31, 223. 40. J. Shu, B. P. A. Grandjean, S. Kaliaguine, “Effect of Cu(OH)2 on Electroless Copper Plating”, Industrial & Engineering Chemistry Research, 1997, 36, 1632. 41. 方景禮,“電鍍添加劑總論”,傳勝出版社,民國87年。 42. 洪愛娜,“化學鍍銅簡介”,電路板會刊,第10期,民國89年。 43. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, Journal of The Electrochemical Society, 1995, 142, L87. 44. W. P. Dow, H. S. Huang, M. Y. Yen, H. H. Chen, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition Ⅱ. Studies Using Electron Paramagnetic Resonance and Glavanostatic Measurements”, Journal of The Electrochemical Society, 2005, 152, C77. 45. W. Shao, G. Pattanaik, G. Zangari, “Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolyte”, Journal of The Electrochemical Society, 2007, 154, D201. 46. N. Zukauskaite, A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem. , 1989, 24, 1564. 47. J. P. Healy, D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ.The Instability of 4,5-Dithiaoctane-1,8-Disulphonic Acid in the Bath on Open Pircuit”, Journal of Electroanalytical Chemistry, 1992, 338, 167. 48. M. Yokoi, S. Konishi, T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene Glycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku, 1984, 52, C218. 49. J. J. Kelly, A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study”, Journal of The Electrochemical Society, 1998, 145, 3472. 50. Z. V. Feng, X. Li, A. A. Gewirth, “Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study”, Journal of Physical Chemistry B, 2003, 107, 9415. 51. W. P. Dow, M. Y. Yen, W. B. Lin, S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling By Copper Electroplating”, Journal of The Electrochemical Society, 2005, 152, C769. 52. 汪健民,“材料分析”,中國材料科學學會,第三版,第五章,民國93年。 53. 汪建民,“材料分析”,中國材料科學學會,第三版,第六章,民國九十年。 54. 張立,“微結構分析與電子顯微鏡學”,材料與社會,第37期,民國79年。 55. N. J. Harrick, “Internal Refelection Spectrosxopy”, Wiley, New York, 1967. 56. 葉玉堂,“紫外光/可見光吸收光譜儀”,儀器總覽 4 化學分析儀器,民國87年 57. 黃振昌,“X光光電子能譜儀”,儀器總覽 5 表面分析儀器,民國87年 58. 林麗娟,“X光繞射原理及其應用”,工業材料雜誌,第86期,民國83年 59. X. D. Huang, S. M. Bhangale, P. M. Moran, N. L. Yakovlev, J. Pan, “Surface Modification Studies of Kapton HN Polyimide Films”, Polymer International, 2003, 52, 1064. 60. M. Sone, K. Kobayakawa, M. Saitou, Y. Sato. “Electroless Copper Plating Using FeⅡ as a Reducing Agent”, Electrochimica Acta, 2004, 49, 233. 61. C. H. Lee, S. C. Lee, J. J. Kim, “Bottom-up Filling in Cu Electroless Deposition Using Bis-(3-sulfopropyl)-disulfide (SPS)”, Electrochimica Acta, 2005, 50, 3563. 62. Z. Wang, O. Yaegashi, H. Sakaue, T. Takahagi, S. Shingubara, “Effect of Additives on Hole Filling Characteristics of Electroless Copper Plating”, Japanese Journal of Applied Physics, 2004, 43, 7000. 63. T. Osborn, N. Galiba, P. A. Kohl, “Journal of the Electrochemical society”, 2009, 156, D226.
摘要: 近年來,隨著電子產品朝向高性能、多功能、小型化、薄型化、攜帶型化等的方向發展,傳統的硬性印刷電路板已經面臨淘汰或與軟性印刷電路板結合的命運。而軟性基材上的目前所遭遇的問題即是佈線接著性的金屬化問題。因為常使用的導線材質為銅金屬,要如何在不導電的聚亞醯胺基材上製作出微米線路,而不會出現銅膜與聚亞醯胺基材的附著力不佳及鬆散的金屬結構等問題,為目前軟性印刷電路板待克服的問題。 本研究利用全濕式的化學法,於聚亞醯胺基材上進行直接表面金屬化,使銅奈米顆粒沉積於聚亞醯胺表面上;再以此銅奈米層為晶種層,進行無電電鍍銅使銅層增厚平坦化。根據實驗結果,經由二甲基胺硼烷還原出的銅奈米顆粒的催化活性並不佳,因此吾人藉由電鍍中所使用的化學添加劑,將添加劑加入還原劑中,使銅奈米顆粒於還原過程中被修飾,銅顆粒大小變得較小且均一,後續無電鍍銅的沉積速率也因而提升,於附著性與導電性測試皆良好;由此可知,這些化學添加劑於化學修飾的聚亞醯胺上,對奈米金屬顆粒的生成具有相當大的影響。上述之系列樣品將以衰減式全反射傅立葉紅外光譜儀分析表面的化學變化,原子力顯微鏡分析銅奈米顆粒還原前後的表面型態變化,場發射掃描式電子顯微鏡分析銅奈米顆粒於聚亞醯胺表面的型態,穿透式電子顯微鏡分析試片截面的金屬分佈型態,能量散佈光譜儀分析表面元素,進而研究其後續應用與開發。
URI: http://hdl.handle.net/11455/3769
其他識別: U0005-2207200916175000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2207200916175000
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.