Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3770
標題: 應用義大利白松露Tuber magnatum生產多醣體最適化培養之探討
Optimization of the cultivation conditions on the Polysaccharide production from Tuber magnatum
作者: 葉瓊文
Yeh, Chiung-Wen
關鍵字: Tuber magnatum
義大利白松露
submerged culture
polysaccharide
Response surface methodology
液態醱酵
多醣體
最佳化
出版社: 化學工程學系所
引用: 1. Mello, A., Murat, C., Bonfante, P., Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett, 2006. 260(1): p. 1-8. 2. Bradshaw, D., Vertebrate ecophysiology: an introduction to its principles and applications. Cambridge University Press, 2003. 3. Gao, J.M., Zhang, A.L., Wang, C.Y., Wang, X.H., Liu, J.K., A new ceramide from the ascomycete Tuber indium. Chinese Chemical Letters, 2002. 13(4): p. 325-6. 4. Hu, H.J., Li, P.Z., Lin, T., Hang, B.Q., Guo, Y.W., Effects of polysaccharide of Tuber sinica on tumor and immune system of mice. J Chin Pharmaceut Univ 1994. 125(5): p. 289-92. 5. 胡弘道, 與林木共生的珍貴食材:食用真菌. 科學發展, 2005. 389: p. 14-19. 6. Hall, I.R., Brown, G., Byars, J., The black truffle: its history, uses and cultivation. New Zealand Institute for Crop & Food Research Limited., 2001. 7. Iotti, M., Amicucci, A., Stocchi, V., Zambonelli, A., Morphological and molecular characterization of mycelia of some Tuber species in pure culture. New phytologist., 2001. 155(3): p. 499-505. 8. 王培銘, 食藥用菇液態培養製程之開發. 食品工業, 2002. 34: p. 31-35. 9. Edelstein, L., A model for pellet size distributions in submerged mycelial cultures. Journal of Theoretical Biology, 1983. 105: p. 427-452. 10. Blanch, H.W., Bhavaraju, S.M., A model for pellet breakup in fungal fermentations. Journal of Fermentation and Bioengineering, 1976. 54: p. 466-468. 11. Metz, B., Kossen, N.W.F. , The growth of molds in the form of pellets. Biotechnology and Bioengineering, 1977. 19: p. 781-799. 12. 水野卓、川合正, 菇類的化學、生化學. 國立編譯館, 1997. 13. Mizuno, T., Bioactive biomolecules of mushroom:Food fruction and medicinal effect of mushroom fungi. Food Reviews International, 1995. 11(1): p. 7-21. 14. Bartnicki-Garcia, S., Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology, 1968. 22: p. 87-108. 15. Cheung, P.C.K., Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia. Journal of Agriculture and Food Chemistry, 1996. 44: p. 468-471. 16. Mizuno, T., Development of an antiumor biological response modifier from Phelliuns Teng(Aphyllophoromycetideae). Journal of Medical Mushroom, 2000. 2(1): p. 21-25. 17. Kosuna, K., polysaccharide useful as biological response modulators and their preparation with Basidiomycetes. European Patent Ep, 1996: p. 733-740. 18. 謝翁維、王伯徹, 菇類的傳統應用與現代科學研發. 食品工業, 2003. 35(5): p. 3-12. 19. 賴進此, 菇類活性物質的分離及其應用. 食品工業, 2003. 35(5): p. 29-38. 20. Leigh, J.A., Coplin, D. L., Exopolysaccaharide in plant-bacterial interaction. Annual Review of Microbiology, 1992. 46: p. 307-312. 21. Wu, W.T., Wu, J.Y., Airlift reactor with net draft tube. Journal of Fermentation and Bioengineering. Bioeng, 1990. 70: p. 359-361. 22. Whitfield, C., Valvano, M. A., Biosynthesis and expression of cell surface polysaccharide in gram negative bacterial. Advances in microbial physiology, 1993. 35: p. 136-141. 23. Hikino, H., Kanno, C., Mirin, Y., Hayashi, T., Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganodderma lucidum fruit bodies. Planta medica, 1985. 4: p. 39-40. 24. Kim, D.H., Yang, B. K., Jeong, S. C., Park, J. B., Cho, S. P., Das, S., Yun, J. W., Song, C. H., Production of hypoglycemic, extra cellular polysaccharide from the submerged culture of the mushroom. Biotechnology Letters, 2001. 23: p. 514-517. 25. Sone, Y., Kakuta, M., Misaki, A., Isolation and characterization of polysaccharide of “Kikurage”fruit body of Auricularia auricula-judae. Agricultural and Biological Chemistry, 1978. 42: p. 417-425. 26. Ukai, S., Kiho, T., Hara, C., Kuruma, I., Tanaka, Y., Polysaccharides in fungi. XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. J. Pharmacobiodyn, 1983. 6(12): p. 983-990. 27. Hetland, G., Ohno, N., Aaberge, I. S., Lovik, M., Protective effect of β-glucan against systemic Streptococcus pneumoniae infection in mice. FEMS Immunology & Medical Microbiology, 2000. 27: p. 111-116. 28. Kim, H.S., Kacew, S., Lee, B. M., In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis Miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor). Carcinogenesis, 1999. 20(8): p. 1637-1640. 29. Zhang, G.L., Wang, Y. H., Ni, W., Teng, H. L., Lin, Z. B., Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune Liver injury in mice. World Journal of Gastroenterology, 2002. 8: p. 728-733. 30. 黃雪芳;劉柯俊;管育慧;董光世;蘇慶華;董大成, 口服靈芝菌絲培養液之抗癌人工轉移作用. 中華癌醫會誌, 1989. 5(1): p. 10-15. 31. 林俊清, 生藥的解說- 靈芝的介紹. 1990. 6(3): p. 104-111. 32. Kojima, T., Tabata, K., Itoh, W., Yanaki, T. , Molecular weight dependence of the antitumor activity of schizophyllan. Agricultural and biological chemistry, 1986. 50: p. 231-232. 33. Chihara, G., Hamuro, J., Maeda, Y.Y., Arai, Y., Fukuoka, F., Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.)SING. Cancer Research, 1970. 30: p. 2776-2781. 34. Tabata, K., Itoh, W., Kojima, T., Kawabate, S., Misaki, K., Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune FRIES. Carbohydrate Research, 1981. 89: p. 121-135. 35. Ng, T., A review of research on the protein-bound polysaccharide (Polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). General Pharmacology, 1998. 30: p. 1-4. 36. Lei, L.S., Lin, Z.B., Effect of Ganoderma polysaccharideson T cell subpopulstions and production of interleukin2 in mixed lymphocyte response. Acta Pharmaceutica Sinica, 1992. 27: p. 331-335. 37. Lei, L.S., Lin, Z.B., Effect of Ganoderma polysaccharides on the activity of DNA polymerase α in spleen cells stimulated by alloantigens in mice in vitro. Beijing Medical University, 1991. 23: p. 329-333. 38. Lieu, C.W., Lee, S.S., Wang, S.Y., The effect Ganoderma lucidum on induction of differentiation in leukemin U937 cells. Anticancer Research, 1992. 12: p. 1211-1216. 39. Matsuzaki, K., Sato, T., Enomoto, K., Yamamoto, I., Oshima, R., Hatanaka, K., Uryu, T., Kaku, H., Sone, Y., Misaki, A., Synthesis of water-soluble, branched of polysaccharides having Dmannopyranose, D-arabinofuranose, or oligo-D-arabinofuranose side-chains and their antitumor activity. Carbohydrate Research, 1986. 157: p. 171-183. 40. Sasaki, T., Takasuka, N., Chihara, G., Maeda, Y., Antitumor activity of degradaded products of lentinan: its correlation with molecular weight. Gann, 1976. 67: p. 191-195. 41. Kishida, E., Sone, Y., Misaki, A., Effects of branch distribution and chemical modifications of antitumor (1→3)-β-D-glucans. Carbohydrate Polymers, 1992. 17: p. 89-95. 42. Bohn, J.A., Bemiller, J.N., (1→3)-β-D-glucans biological response modifiers: a review of structure-functional activity relationships. Carbohydrate Polymers, 1995. 28: p. 3-14. 43. Box, G.E., Wilson, K. B. , On the experiment attainment optimem conditions. Journal of the Royal Statistical Society: Series B, 1951. 13: p. 1-45. 44. 沈明來, 試驗設計學. 九州圖書文物有限公司, 1999. 45. 黎中正, 實驗設計與分析. 高雄圖書有限公司, 1998. 46. 洪哲潁、陳國誠, 回應曲面實驗設計法在微生物酵素生產上之應用. 化工, 1992. 39(2): p. 3-18. 47. 黃麗娜, 食用菇菌絲體深層培養在食品工業上的用途. 食品工業, 1996. 28: p. 20-26. 48. Tang, Y.J., Zhu,L.L., Li, D.S., Mi, Z.Y., Li, H.M. , Significance of inoculation density and carbon source on the mycelial growth and Tuber polysaccharides production by submerged fermentation of Chinese truffle Tuber sinense. Process Biochemistry, 2008. 43: p. 576-586. 49. Lee, I.H., Chen, C. T., Chen, H. C., Hsu, W. C. . Sugar flux in response to carbohydrate-feeding of cultured Antrodia camphorata, a recently described medicinal fungus in Taiwan. Chinese Medical Journal, 2002. 13(1): p. 21-31. 50. Jonathan, S.G., Fasidi, I. O. , Studies on phytopormones, vitamins and mineral element requirements of Lentinus subnudus (Berk) and Schizophyllum commune (Fr. Ex. Fr) from Nigeria. Journal of Agriculture and Food Chemistry, 2001. 75: p. 303-307. 51. Patel, G.B., Agnew, B. J. , Growth and butyric acid production by Clostridium populeti. Archives of microbiology, 1988. 150: p. 267-271. 52. Fang, Q.H., Zhong, J. J., Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 2002. 37: p. 769-774. 53. 徐錦堂, 中國藥用真菌學. 北京醫科大學、中國聯合大醫科大學聯合出版社, 1997. 54. 陶雪娟、徐崇敬、宋鳳菊、張建敏、陳建華, 蕈菌液體生物醱酵技 術的研究現狀與進展. 上海農學院學報, 1999. 17(2): p. 141-147. 55. Cho, Y.J., Park, J. P., Hwang, H. J., Kim, S.W., Choi, J. W., Yun, J. W. . Production od red pigment by submerged culture of Paecilomyces sinclairii. Letters in Applied Microbiology, 2002. 35: p. 195-202. 56. Tang, Y.J., Zhu,L.L., Liu, R.S., Li, H.M., Li, D.S., Mi, Z.Y., Quantitative response of cell growth and Tuber polysaccharides biosynthesis by medicinal mushroom Chinese truffle Tuber sinense to metal ion in culture medium. Bioresource Technology, 2008. 99: p. 7606-7615.
摘要: 近年來,應用液態醱酵培養菇類生產菌體和多醣體,已成為菇類利用之新趨勢。本研究的目的是以義大利白松露菌Tuber magnatum 開發液態醱酵生產其菌絲體與胞外多醣體,在研究結果中得知,碳、氮源對菌絲體生長與其代謝物生產之影響極大。在不同碳源測試實驗中,以sucrose為最佳碳源,其生產胞外多醣體為最高 397.6 mg/L,在不同氮源測試中,以yeast extract為最佳氮源,其生產胞外多醣體為最高 706.55 mg/L。 在基質最佳化實驗中,選擇碳源、氮源、溫度、pH、鎂離子及鉀離子為設計因子以尋找最佳化之培養基,利用回應曲面法來找出最佳的培養基組成,經由回應曲面法實驗設計法,結果顯示以sucrose 10.60 g/L、yeast extract 10.92 g/L、MgSO4 1.0 g/L、KH2PO4 1.01 g/L,培養基最適初始pH和醱酵溫度,分別為6.5和25.0℃在恆溫震盪箱以100 rpm的操作條件下,可得到最佳的胞外多醣體 1329.25 mg/L,胞外多醣體為未最佳化前的3.34倍。
Recently, the submerged fermentation process for the production of mushrooms' mycelia and polysaccharides has been developed and become the new trends for the usage of mushrooms. Truffle with its special aroma and taste in food market, has a higher economic value that all the other mushrooms. In this study, the main goal is to enhance the growth of Tuber magnatum to produce Tuber mycelia and polysaccharides in submerged culture. In the results, the carbon and nitrogen sources in the medium had significant influences on the mycelium and metabolites. In carbon sources tests, sucrose had the best Tuber polysaccharides production, which reached at 397.6 mg/L. In nitrogen sources tests, yeast extract was identified to be the most favorable source for Tuber polysaccharides production, which reached at 706.5 mg/L. In the optimization of fermentation medium, carbon source, nitrogen source, temperature, pH, magnesium ion and potassium ion were chosen as the factors of designing the best formula for growth medium. According to the response surface methodology, the optimal concentrations of sucrose, yeast extract, magnesium sulfate and potassium dihydrogen phosphate was 10.6, 10.92, 1.0 and 1.0 g/L, respectively. The fermentation condition were conducted at 25℃ and pH 6.5 on a rotary shaker at 100 rpm. The validation experiment showed the experimental values were in good agreement with the predicted values. The highest EPS production (1329.25 mg/L) was obtained under the optimal conditions, which was 3.3 fold higher than that of the control.
URI: http://hdl.handle.net/11455/3770
其他識別: U0005-2207200923065200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2207200923065200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.