Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3772
標題: 藉由連續自我反覆反應製備高溫熱穩定性光學高分子及其特性分析
Thermally Stable NLO Polymers via Sequential Self-Repetitive Reaction : Synthesis, Thermal Properties and Nonlinear Optical Characterization
作者: 林訓廉
Lin, Hsun-Lien
關鍵字: poly(amide-imide)
聚醯胺-醯亞胺
polyimide
nonlinear optical polymer
Sequential Self-Repetitive Reaction
SSRR
聚醯亞胺
非線性光學高分子
連續自我反覆反應
出版社: 化學工程學系所
引用: 1. Zyss, J.; Chemla, D. S., Nonlinear Optical Properties of Organic Molecules and Crystals 1987, Vol I, Chapter2-1. 2. Kuo, W. J.; Hsiue, G. H.; Jeng, R. J. J. Mater. Chem. 2002, 12, 868. 3. Van den Broeck, K.; Verbiest, T.; Degryse, J.; Van Beylen, M.; Persoons, A.; Samyn, C. Polymer, 2001, 42, 3315. 4. Tsai, H.C.; Kuo, W.J.; Hsiue, G.H. Macromol. Rapid Commun. 2005, 26, 986. 5. Xu, G.; Si, J.; Liu, X.; Yang, O.; Ye, P.; Li, Z.; Shen, Y. Opt. Commun. 1998, 153, 95. 6. Kuo, W.J.; Chang, M.C.; Juang, T.Y.; Chen, C.P.; Chen, C.T.; Chang, H.L.; Jeng, R.J. Polym. Adv. Technol. 2005, 16, 515. 7. Chen, Y.C.; Chang, H.L.; Lee, R.H.; Dai, S.A.; Su, W.C.; Jeng, R.J. Polym. Adv. Technol. 2009, 20, 493. 8. Sigelle, M.; Hierle, R., J. Appl. Phys. 1981, 52, 4199. 9. Singer, K. D.; Kuzyk, M. G.; Holland, W. R.; Lalama, S.; Comizzoli, R. B.; Katz, H. E.; Schilling, M. L., Appl. Phys. Lett. 1988, 53, 1800. 10. Uchiki, H.; Kobavashi, T., J. Appl. Phys. 1988, 64, 2625. 11. Messier, J.; Kajzar, F.; Prasad, P., Organic Molecules for Nonlinear Optics and Photonics Series:E, 194 (1991). 12. Teng, C. C.; Man, H. T., Appl. Phys. Lett.1990, 56, 1734. 13. Shuto, Y.; Amano, M., J. Appl. Phys. 1995, 77, 4632. 14. Dolton, L. R.; Haper, A. W., Photoactive organic materials for Electro-optic modulator and high density Optical memory applications., In: Kajzar, F.; Avranovich, V. M.; Lee, C. Y. C. (eds) Photoactive organic materials: science and application. NATO ASI Series, vol 9, Kluwer Academic, Dordrecht, p 183 (1996). 15. Ashley, P. R., Component integration and application with organic Polymers., In: Kajzar, F.; Avranovich, V. M.; Lee, C. Y. C. (eds) Photoactive organic materials: science and application. NATO ASI Series, vol 9, Kluwer Academic, Dordrecht, p 199 (1996). 16. Flipse, M. C.; Van der Vorst, C. P. J. M.; Hofstraat, J. W.; Wounderberg, R. H.; Van Gassel, R. A. P.; Lamers, J. C.; Van der Linden, E. G. M.; Veenis, W. J.; Diemeer, M. B. J.; Doncker, M. C. J. M., Recent progress in Polymer based Electro-optic modulators: materials and technology., In: F. Kajzar, V. M. Avranovich, C. Y. C. Lee(eds) Photoactive organic materials: science and application. NATO ASI Series, vol 9, Kluwer Academic, Dordrecht, p 229 (1996). 17. Mohlmann, G.; Horsthuis, H. G.; Otomo, A.; Stegeman, G. I.,Polymer films obtained by DC-electric field and pure opticak Poling. In: G. R. Mohlmann (ed) Nonlinear Optical properties of organic materials VⅡ. Proc SPIE, vol 2285, p 300 (1994). 18. Normandin, R.; Stegeman, G. I., Opt. Lett. 1979, 4, 58. 19. Normandin, R.; Stegeman, G. I., Appl. Phys. Lett. 1980, 36, 253. 20. Normandin, R.; Stegeman, G. I., Appl. Phys. Lett. 1982, 40, 759. 21. McLellan, E.J.; Figueira, J.F., Rev. Sci. Instrum. 1979, 50, 1213. 22. Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G., Phys. Rev. Lett. 1961, 7, 118. 23. Maker, P. D.; Terhune, R. W.; Nisenoff, M.; Savage, C. M., Phys. Rev. Lett. 1962, 8, 21. 24. Davydov, B. L.; Dekacheva, L. D.; Dunina, V. V.; Zhabotinskii, M. E.; Zolin, V. F.; Koreneva, L. G.; Samokhina, M. A., JEPT Lett. 1970, 12, 16. 25. Mohwald, H., Thin Solid Films 1988, 159, 1. 26. Levine, B. F.; Bethea, G. F., J. Chem. Phys. 1975, 63, 2666. 27. Ouder, J. L., J. Chem. Phys. 1977, 67, 446. 28. Pethkar, S.; Dharmadhikari, J. A.; Athawale, A. A.; Vijayamohanan, K.; Aiyer, R. C., J. Phys. Chem. B. 2001, 105, 5110. 29. Xie, H. Q.; Liu, Z. H.; Huang, X. D.; Guo, J. S., Eur. Polym. J. 2001, 37, 497. 30. Shi, Y. Q.; Zhang, C.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H., Science, 2000, 228, 119. 31. Dalton, L. R., Opt. Eng., 2000, 39, 589. 32. Jen, A. K. Y.; Wang, K. Y.; Rao, V. P.; Drost, K.; Cai, Y. M., J. Electron. Mater. 1994, 23, 653. 33. Stenger-Smith, J. D.; Henry, R. A.; Hoover, J. M.; Lindsay, G. A.; Nadler, M. P.; Nissan, R. A., J. Polym. Sci. Polym. Chem. Ed. 1993, 31, 2899. 34. Wang, N. P.; Leslie, T. M.; Wang, S.; Kowel, S. T., Chem. Mater. 1995, 7, 185. 35. Xu, C.; Wu, B.; Todorova, O.;. Dalton, L. R; Shi, Y.; Ranon, P. M.; Steier, W. H., Macromolecules 1993, 26, 5303. 36. Mandal, B. K.; Kumar, J.; Huang, J. C.; Tripathy, S. K.; Makromol. Chem. Rap. Commum. 1991, 12, 63. 37. Hou, S. S.; Kuo, P. L., Polymer 2001, 42, 9505. 38. Ogoshi, T.; Itoh, H.; Kim, K. M.; Chujo, Y., Macromolecules 2002, 35, 334. 39. Wang, Y.; Wang, X. J.; Chuai, X. H.; Fu, N.; Cui, Z. C.; Yi, M. B.; Zhang, D. M.; Yang, B., Polym. Int. 2004, 53, 1106. 40. Maaref, S.; Roz, Z.; Sun, S. S. J.; Seo, K.; Winston, K.; Bonner, C. E., J. Appl. Polym. Sci. 2004, 92, 317. 41. Singh, R. K.; Stoffer, J. O.; Flaim, T. D.; Hall, D. B.; Torkelson, J. M., J. Appl. Polym. Sci. 2004, 92, 770. 42. Hsiue, G. H.; Kuo, J. K.; Jeng, R. J.; Suen, T. H.; Lee, R. R.; Shy, J. T.; Liu, Y. L., Mol. Cryst. Liquid Cryst. B 1996, 15, 367. 43. Xie, H. Q.; Huang, X. D.; Guo, J. S., J. Appl. Polym. Sci. 1996, 60, 537. 44. Jeng, R. J.; Chang, C. C.; Chen, C. P.; Chen, C. T.; Su, W. C., Polymer 2003, 44, 143. 45. Ma, H.; Jen, A. K. Y., Adv. Mater. 2001, 13, 1201. 46. Ma, H.; Liu, S.; Luo, J. D.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y., Adv. Funct. Mater. 2002, 12, 565. 47. Pereverzev, Y. V.; Prezhdo, O. V.; Dalton, L. R., Chem. Phys. Lett. 2003, 373, 207. 48. Luo, J. D.; Ma, H.; Jen, A. K. Y.; C. R. Chimie 2003, 6, 895. 49. Luo, J. D.; Haller, M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, ; Chen, B. Q.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y., J. Phys. Chem. B. 2004, 108, 8023. 50. Singer, K. D.; Kuzyk, M. G.; Holland, W. R.; Sohn, J. E.; Lalama, S. J.; Comizzoli, R. B.; Kaze, H. E.; Schilling, M. L., Appl. Phys. Lett. 1988, 53, 1800. 51. Wu, J.; Valley, J. F.; Ermer, S.; Binkley, E. S.; Kenney, J. T.; Lipscomb, G. F.; Lytel, R., Appl. Phys. Lett. 1991, 58, 225. 52. Wong, K. Y.; Jen, A. K. Y., J. Appl. Phys. 1994, 75, 3308. 53. Dandapani, S.; Curran, D. P., Tetrahedron 2002, 58, 3855. 54. Yoon, C.B.; Shim, H.K., J. Mater. Chem. 1999, 9, 2339. 55. Kima, T.D.; Lee,K.S.; Jeong, Y.H.; Jo, J.H.; Chang, S., Synth. Met. 2001, 117, 307. 56. Yu D.; Yu L., Macromolecules 1994, 27, 6718. 57. Saadeh, H.; Yu, D.; Wang, L. M.; Yu, L., J. Mater. Chem. 1999, 9, 1865. 58. Chen, T. A.; Jen, A. K.Y.; Cai, Y., J. Am. Chem. Soc. 1995, 117, 7295. 59. Leng, W.; Zhou, Y.; Xu, Q.; Liu, J., Macromolecules 2001, 34, 4774. 60. Hampsch, H.; Yang, J.; Wong, G.; Torkelson, J., Macromolecules 1990, 23, 3648. 61. Mitsunobu, O., Synthesis, 1981, 1. 62. Maglio, G.; Palumbo, R.; Tortora, M., J. Polym. Sci. Pol. Chem. 2000, 38, 1172. 63. Yang, C.P.; Su, Y.Y.; Wen, S.J.; Hsiao, S.H., Polymer 2006, 47, 7021. 64. Yamazaki, N.; Matsumoto, M., J. Polym. Sci. Pol. Chem. 1975, 13, 1373. 65. Tamai, S.; Ohkawa, Y.; Yamaguchi, A., Polymer 1997, 38, 4079. 66. Wicks, D. A.; Wicks J. Z. W., Prog. Org. Coat. 2001, 41, 1. 67. Hoand, K. S.; Chen, L. W., J. Polym. Sci. Pol. Chem. 1997, 35, 1703. 68. Chen, L. W.; Ho, K. S. J. Polym. Sci. Pol. Chem. 1997, 35, 1711. 69. Kim, H. K.; Moon, I. K.; Lee, H. J.; Han, S.G.; Won, Y. H., Polymer, 1998, 39, 1719. 70. Balogh, D. T.; Carvalho, A. J. F., J. Appl. Polym. Sci. 2007, 103, 841. 71. Kurzer, F.; Douraghi-Zadeh, K.; Chem. Rev. 1966, 67, 107. 72. Williams, A.; Ibrahim, I. T., Chem. Rev. 1981, 81, 589. 73. Ulrich, H., Chemistry and Technology of Isocyanate, John Wiley & Sons, New York (1996). 74. Mkolajczyk, M.; Kielbasinski, P., Tetrahedron 1980, 37, 233. 75. Monagle, J. J.; Campbell, T. W.; McShane J. H. F., J. Am. Chem. Soc. 1962, 84, 4288. 76. Alberino, L. M.; Farrissey, J. W. J., U.S. Pat. 3,929,733 (1975). 77. Alberino, L. M.; Farrissey, J. W. J., Sayigh, D. S. A. A. R., J. Appl. Polym. Sci. 1977, 21, 1999. 78. Wagner, K.; Findeisen, K.; Schafer, W.; Dietrich, W., Angew. Chem. Int. Ed. 1981, 20, 819. 79. Detar, D. F.; Silverstein, R., J. Am. Chem. Soc. 1966, 88, 1013. 80. Wei, K. L.; Wu, C. H.; Huang, W. H.; Lin, J. J.; Dai, S. A., Macromolecules 2006, 39, 12. 81. Wicks, D. A.; Wicks, J. Z. W., Prog. Org. Coat. 1999, 36, 148. 82. Regulski, T.; Thomas, M. R., J. Appl. Polym. Sci. 1983, 48, 1003. 83. Parker, D. K.; Musleve, R. T., U.S. Pat. 5,208,347 (1993). 84. A-Lim, D. S. T.; Schotman, A. H. M.; Addink, R.; Nijenhuis, K. L.; Mijs, W. J., Polym. Bull. 1995, 35, 9. 85. Chen, C. W.; Cheng, C. C.; Dai, S. A., Macromolecules 2007, 40, 8139. 86. Kim, H. K.; Moon, I. K.; Lee, H. J.; Han, S.G.; Won, Y. H., Polymer, 1998, 39, 1719. 87. Li, Z.; Zhao, Y., Zhou, J.; Shen, Y., Eur. Polym. J. 2000, 36, 2417. 88. Yang, Z.; Qin, A.; Zhang, S.; Ye, C.; Eur. Polym. J. 2004, 40, 1981. 89. Kim, T. D.; Jen, A. K. Y., Adv. Mater. 2003, 15, 1635. 90. Haller, M.; Luo, J.; Li, H.; Kim, T. D.; Liao, Y.; Robinson, B. H.; Dalton, L. R.; Jen, A. K. Y., Macromolecules 2004, 37, 688. 91. Kang, J. W.; Kim, T. D.; Luo, J.; Haller, M.; Jen, A. K. Y., Appl. Phys. Lett. 2005, 87, 071109. 92. Ma, H.; Wu, J.; Herguth, P.; Chen, B.; Jen, A. K. Y., Chem. Mater. 2000, 12, 1187. 93. Kim, T. D.; Luo, J.; Ka, J. W.; Hau, S.; Tian, Y.; Shi, Z.; Tucker, N. M.; Jang, S. H.; Kang, J. W.; Jen, A. K. Y., Adv. Mater. 2006, 18, 3038. 94. Kim, T. D.; Luo, J.; Tian, Y.; Ka, J. W.; Tucker, N. M.; Haller, M.; Kang, J. W.; Jen, A. K. Y., Macromolecules 2006, 39, 1676. 95. Kuo, Y. H.; Luo, J.; Steier, W. H.; Jen, A. K. Y., IEEE Photonics Technol. Lett. 2006, 18, 175. 96. Shi, Z.; Hau, S.; Luo, J.; Kim, T. D.; Tucker, N. M., Ka, J. W.; Sun, H.; Pyajt, A.; Dalton, L. R.; Chen, A.; Jen, A. K. Y., Adv. Funct. Mater. 2007, 17, 2557. 97. 汪乙嘉, 由Poly(acylurea)中間體製備高溫熱穩定之二次非線性光學聚醯胺-醯亞胺高分子及其特性分析, 國立中興大學化學工程研究所碩士論文, 2005. 98. Lee, G. Y.; Jang, H. N.; Lee, J. Y., J. Polym. Sci. Pol. Chem. 2008, 46, 3078. 99. Lee, J. Y.; Kim, J. H.; Jung, W. T.; Park, Y. K., J. Mater. Sci. 2007, 42, 3936. 100. Do, J. Y.; Park, S. K.; Ju, J. J.; Kim, M. S.; Park, S.; Lee, M. H.; Kim, B. G.; Jeong, M. Y., Opt. Mater. 2007, 29, 1563. 101. Wang, G.; Baehr-Jones, T.; Hochberg, M.; Scherer, A., Appl. Phys. Lett. 2007, 91, 143109. 102. Chattopadhyay D. K.; Raju K. V. S. N., Prog. Polym. Sci. 2007, 32, 352. 103. Ribot, F.; Toledano, P.; Sanchez, C., Chem. Mater. 1991, 3, 759. 104. Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J., Chem. Rev. 2004, 104, 3893. 105. Suac, H. W.; Chen, W. C. J. Mater. Chem. 2008, 18, 1139. 106. Krishnan, P.; Park, J. S.; Kim, C. S. J. Membr. Sci. 2006, 279, 220. 107. Matsuyama, I.; Satoh, S.; Katsumoto, M.; Susa, K., J. Non-Cryst. Solids 1991, 135, 22. 108. Brinker, C. J., J. Non-Cryst. Solids 1988, 100, 31. 109. Aelion, R.; Loebel, A.; Eirich, F. J. Am. Chem. Soc. 1950, 72, 5705. 110. Nandi, M.; Conklin, J. A.; Salvati, J. L.; Sen, A., Chem. Mater. 1991, 3, 201. 111. Jeng, R. J.; Chen, Y. M.; Jain, A.; Kumar, J; Tripathy, S. K., Chem. Mater. 1992, 4, 1141. 112. Karatas, S.; Kayaman, A. N.; Demirer, H.; Güngör, A., Polym. Adv. Technol. 2007, 18, 490. 113. Jeng, R. J.; Chen, Y. M.; Jain, A.; Kumar, J.; Tripathy, S. K., Chem. Mater. 1992, 4, 972. 114. Jeng, R. J.; Chang, C. C.; Chen, C. P.; Chen, C. T.; Su, W. C. Polymer 2003, 44, 143. 115. Jeng, R. J. ; Hong, W. Y. ; Chen, C. P. ; Hsiue, G. H. Polym. Adv. Technol. 2003, 14, 66. 116. Qiu, F.; Cao, Y.; Xu, H.; Jiang, Y.; Zhou, Y.; Liu, J., Dyes Pigment. 2007, 75, 454. 117. Giannelis E. P. Adv. Mater. 1996, 8, 29. 118. Leszczy´nska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J. R., Thermochim. Acta 2007, 453, 75. 119. Awad, W. H.; Gilman, J. W.; Nydena, M.; Harris, J. R. H.; Sutto, T. E.; Callahan, J.; Trulove, P. C.; DeLongc, H. C.; Fox, D. M., Thermochim. Acta 2004, 409, 3. 120. Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2001, 13, 3774. 121. Chang, J. H.; Kim, S. J.; Im, S., Polymer 2004, 45, 5171. 122. Wang, M. S.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 468. 123. Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y., J. Am. Chem. Soc. 1999, 121, 1615. 124. Zanetti, M.; Lomakin, S.; Camino, G., Macromol. Mater. Eng. 2000, 279, 1. 125. Tyan, H. L.; Leu, C. M.; Wei, K. H., Chem. Mater. 2001, 13, 222. 126. Tyan, H.L.; Liu, Y.C.; Wei, K.H., Polymer 1999, 40, 4877. 127. Wang, W. J.; Chin, W. K.; Wang, W. J. J Polym Sci Part B Polym Phys 2002, 40, 1690. 128. Yang, C.; Zhou, H.; Chen, X.; Liu, Y.; Qin, J., J. Mater. Chem. 2005, 15, 1637. 129. Chao, T. Y.; Chang, H. L.; Su, W. C.; Wu, J. Y.; Jeng, R. J., Dyes Pigment. 2008, 77, 515. 130. Xie, K.; Liu, J. G., Polymer 2001, 42, 7267. 131. Yang, C. P.; Hsiao, S. H. Polymer 2002, 43, 5095. 132. Kang, J. W.; Kim, J. P.; Lee, J. S.; Kim, J. J., J. Lightwave Technol. 2005, 23, 364. 133. Pauling, L. The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca, New York (1960). 134. Londe, O.; Teixerira, J., J. Phys. 1983, 44, 525. 135. Katagiri, T.; Duan, M.; Mukae, M.; Uneyama, K., J. Fluorine Chem. 2003, 120, 165. 136. Thomas, W. P.; Zofia, U. L.; Ruth, J.; Margaret, C. E. J. Am. Chem. Soc. 1987, 109, 7786. 137. Kim, Y. W.; Jin, J. I.; Jin, M. Y.; Choi, K. Y.; Kim J. J.; Zyung, T., Polymer 1997, 38, 2269. 138. Gray, T.; Kim, T. D.; Knorr, D. B.; Luo, J.; Jen, A. K. Y.; Overney, R. M. Nano. Lett. 2008, 8, 754. 139. Faccini, M.; Balakrishnan, M.; Diemeer, M. B. J.; Hu, Z.; Clays, K.; Asselberghs, I.; Leinse, A.; Driessen, A.; Reinhoudt, D. N.; Verboom, W., J. Mater. Chem. 2008, 18, 2141. 140. Groh, W., Makromol. Chem. 1988, 189, 2861. 141. Zhou, M., Opt. Eng. 2002, 41, 1631. 142. Pitois, C.; Vukmirovic, S. Hult, A.; Wiesmann, D.; Robertsson, M. Macromolecules 1999, 32, 2903. 143. Hubbard, S. F.; Singer, K. D.; Li, F.; Cheng, S. Z. D.; Harris, F. W., Appl. Phys. Lett. 1994, 65, 265. 144. Briers, D.; Koeckelberghs, G.; Picard, I.; Verbiest, T.; Persoons, A.; Samyn, C., Macromol. Rapid Commun. 2003, 24, 841. 145. Ushiwata, T.; Okamoto, E.; Komatsu, K.; Kaino, T.; Jen, A. K. Y., Opt. Mater. 2002, 21, 61. 146. Wang, Y.; Wang, X.; Chuai, X.; Fu, N.; Cui, Z.; Yi, M.; Zhang, D.; Yang, B., Polym. Int. 2004, 53, 1106. 147. Lu, Z.; Shao, P.; Li, J.; Hua, J.; Qin, J.; Qin, A.; Ye, C., Macromolecules 2004, 37, 7089. 148. Campbell, V. E.; Paoprasert, P.; Mykietyn, J. D.; In, I.; Mcgee, D. J.; Gopalan, P. J. Polym. Sci. Pol. Chem. 2007, 45, 3166. 149. Burland, D. M.; Miller, R. D.; Walsh, C. A., Chem. Rev. 1994, 94, 31. 150. Kalluri, S.; Shi, Y.; Steier, W. H.; Yang, Z.; Xu, C.; Wu, B.; Dalton, L. R. Appl. Phys. Lett. 1994, 65, 2651. 151. Saadeh, H.; Gharavi, A.; Tu, D.; Yu, L. P., Macromolcules 1997, 30, 5403. 152. Balcerzak, E. S.; Grabiec, E.; Sek, D.; Miniewicz, A., Polym. J. 2003, 35, 851. 153. Barikani, M.; Ataei, S.M. J. Polym. Sci: Polym. Chem. 1999, 37, 2245. 154. Barikani, M.; Mehdipour-ataei, S.; Yeganeh, H. J. Polym. Sci: Polym. Chem. 2001, 39, 514. 155. Shi, W.; Fang, C. S.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Wei, H. Z.; Yu, J. Z., Opt. Lasers Eng. 2000, 33, 21. 156. Shi, W.; Fang, C. S.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Hu, H.; Wei, H. Z.; Yu, J. Z., Solid State Commun. 2000, 116, 67. 157. Shi, W.; Fang, C. S.; Sui, Y.; Yin, J.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Hu, H.; Wei, H. Z.; Yu, J. Z., Opt. Commun. 2000, 183, 299. 158. Song, N., Men, L., Gao, J. P., Bai, Y., Beaudin, A. M. R., Yu, G., Wang, Z. Y., Chem. Mater. 2004, 16, 3708. 159. Luo, J. D., Haller, M., Li, H. X., Tang, H. Z., Jen, A. K. Y., Macromolecules 2004, 37, 248. 160. Grabiec, E.; Schab-Balcerzak, E.; Seka, D.; Sobolewska, A.; Miniewicz, A. Thin Solid Films 2004, 453-454, 367. 161. Zhou, Y.; Leng, W.; Liu, X.; Xu, Q.; Feng, J.; Liu, J., J. Polym. Sci. Pol. Chem. 2002, 40, 2478. 162. Qiu, F.; Cao, Y.; Xu, H.; Jiang, Y.; Zhou, Y.; Liu, J., Dyes Pigment. 2007, 75, 454. 163. Pope, E. J. A.; Asami, M.; Mackenzie, J. D., J. Mater. Res. 1989, 4, 1018. 164. Jeng, R.J.; Hung, W. Y.; Chen, C. P.; Hsiue, G. H., Polym. Adv. Technol. 2003, 14, 66. 165. Krishnan, P.; Park, J.S.; Kim, C.S., J. Membr. Sci. 2006, 279, 220-229. 166. Karatas, S.; Kayaman, A.N.; Demirer, H.; Gungor, A., Polym. Adv. Technol. 2007, 18, 490. 167. Liu, X. Q.; Jikei, M.; Kakimoto, M., Macromolecules 2001, 34, 3146.
摘要: 二次非線性光學有機高分子材料具有比無機光學材料更大的分子設計自由度、高的非線性光學係數、材料取得便宜…等優點。但是在光電元件的應用上,普遍高分子系統卻必需改善發色團基的極化效率、提昇材料熱穩定性,以及降低光波導時光學損失值。 本研究以新式的連續自我反覆反應(Sequential Self-Repetitive Reaction ; SSRR)製備聚醯胺-醯亞胺高分子,由於合成可停留於較柔軟分子鏈之poly(N-acylurea)階段,經由即時熟化極化過程使高分子主鏈能展現lattice hardening的現象,進而完整呈現高穩定性與高極化率。綜觀光學特性以及穩定性,發色團基含量為12.8 wt%之聚醯胺-醯亞胺光學高分子(PIDN)最具潛力,以830 nm量測出比文獻為高的電光係數值(20 pm/V),顯示此系統有助於發色團基的極化效率。進一步為了改善PIDN的穩定性,分別採用溶膠凝膠製備半網狀互穿型複材以及利用無機層狀蒙脫土的分散製備無機層狀蒙脫土複材。藉著poly(N-acylurea)側鏈上的酸酐亦或是開環後的羧酸,增強有機無機間的作用力使材料能均勻分散於高分子中。其中半網狀互穿型複合材料,隨著無機物比例大量的添加,一方面能提昇穩定性,同時能調控折射率與降低光損失值;而無機層狀蒙脫土複合材料,展現出層狀蒙脫土微添加量高效率之長時間熱穩定性分析,在120 oC展現不錯的電光係數維持率。研究中也嘗試以SSRR方法合成全聚醯亞胺光學材料,逐步取代光學高分子PIDN中的urethane與amide鍵結,製備出全聚醯亞胺高分子,利用介電特性分析材料的熱性質,發現高分子鏈之鬆弛溫度由PIDN的172 oC提昇至208 oC,電光係數長時間穩定性在200 oC下100小時後能有92 %的維持率,比起原始高分子PIDN的6 %高出許多。由於醯亞胺結構比起尿素與醯胺結構具有更低的通訊波長(1310 nm)光吸收,因此,全聚醯胺材料具有低光損失(2.5 dB/cm)之特性。另一方面,為了改善光波導時材料的光學損失,試著導入氟原子於材料中,並研究通訊波長下的光損失值。明顯發現在波長1310 nm下光損失值由原來不含氟材料的3.4 dB/cm降至2.0 dB/cm。熱性質也因為氟原子的加入使得高分子更趨穩定。
Organic nonlinear optical (NLO) materials have been extensively investigated due to their higher bandwidth, larger nonlinearity and lower cost as compared to inorganics. The most important subjects in developing NLO polymers for electro-optical (EO) modulation are whether the polymers possess excellent poling efficiency, temporal stability and low optical loss. In the previous researches, NLO chromophores are usually incorporated into high glass transition temperature (Tg) polymers and/or crosslinked polymer networks in order to achieve stable optical nonlinearity. However, the high Tg characteristic of polymer allows the NLO-active polymer to exhibit low poling efficiency. The lattice-hardening phenomenon such as the sequential self-repetitive reaction (SSRR) process would be the best choice of the high poling efficiency approach. A series of thermally stable side-chain NLO poly(amide-imide)s via SSRR have been developed. The difunctional azo chromophores DNDA was respectively reacted with excessive amount of methylene-diphenylisocyanate (MDI) to form polycarbodiimide, and subsequently trimellitic anhydride was added to obtain an intermediate, poly(N-acylurea). After in-situ poling and curing process, N-acylurea moieties were converted to amide-imide structures via SSRR, and the Tgs of the polymers were elevated significantly. For the polymer PIDN with the feed ratio (MDI/DNDA=6/1), the electro-optical coefficients (r33) at 830 nm was around 20 pm/V. In order to improve the thermal stability of NLO polymer, alkoxysilane was used to form semi- interpenetrating polymer network composites via sol-gel process. The side-chain carboxyl acid group of poly(N-acylurea) could act as a binding site for alkoxysilane, and the organic-inorganic compatibility was enhanced as a result. The refractive indices of composites could be controlled by varying the inorganic ratios, and the optical losses of the optical films for the materials were reduced with increasing inorganic content. The layered montmorillonite was also used for enhancing the stability. The ameliorated morphology of nanocomposites due to the rich chemical bonds between the intercalating agent-modified MMT and the polymer chains would bring about better thermal properties. Furthermore, a wholly aromatic polyimide structure was attempted to develop via SSRR. The relaxation peak of polyimide which was measured by the dielectric analyzer at a heating rate of 2 oC/min was higher than that PIDN. Moreover, the optical loss of this polyimide was also lower than that of PIDN. On the other hand, the optical loss of polymer was improved by fluorinated the polymer chain. Not only could low optical loss (2.0 dB/cm at 1310 nm) be obtained, but excellent temporal stability of EO coefficient was also achieved.
URI: http://hdl.handle.net/11455/3772
其他識別: U0005-2406200919531300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2406200919531300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.