Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3777
標題: 以超音波輔助之雙活性基相間轉移觸媒在三液相催化酯化合成苯甲酸4-乙醯基苯酯之研究
Ultrasound-Assisted Catalytic Esterification for Synthesizing 4-Acetylphenyl Benzoate by Dual-Site Phase-Transfer Catalyst in Tri-Liquid Phases
作者: 邱俊誠
Chiu, Chun-Cheng
關鍵字: Dual-Site phase-Transfer catalyst
雙活性基相間轉移觸媒
tri-liquid phase
sonochemistry
cavitation
benzoylation
third phase
第三液相
超音波化學
空穴效應
酯化反應
第三相狀態
出版社: 化學工程學系所
引用: [1] C. M. Starks, C. L. Liotta, M. Halpern, Phase-Transfer Catalysis : Fundamentals(1994) [2] S. Naik, L. K. Doraiswamy, “Phase Transfer Catalysis:Chemistry and Engineering”, AICHE, 44 (1998) 612-646. [3] J. Jarrouse, “The Influence of quaternary chloride on the reaction of labike hydrogen compound and chlorine-substituted chlorine derivatives”, CR Heabd. Seances Acad. Scu., C332 (1951) 1424-1434. [4] C. M. Starks, “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium salts”, J. Am. Chem. Soc., 93(1) (1971) 195-199. [5] A. W. Herriott, D. Picker, “Phase transfer catalysis. An evaluation of catalysts”, J. Am. Chem. Soc., 97 (1975) 2345-2349 [6] K. Manabe, “Synthesis of novel chiral quaternary phosphonium salts with a multiple hydrogen-bonding site, and their application to asymmetric phase-transfer alkylation”, Tetrahedron Letters, 54 (1998) 14465. [7] T. Ooi, Y. Uematsu, J. Fujimoto, K. Fukumoto, K. Maruoka., “Adavantage of in situ generation of N-artlsulfonyl imines from a-amide sulfones in the phase-transfer-catalyzed asymmetric Strecker reaction”, Tetrahedron Letters, 48 (2007) 1337-1340. [8] M. L. Wang, Z. F. Lee, F. S. Wang, “Synthesis of novel multi-site phase-transfer catalyst and its application in the reaction of 4,4''-bis(chloromethyl)-1,1''-biphenyl with 1-butanol”, Journal of Molecular Catalysis A: Chemical, 229 (2005) 259-269. [9] J. P. Jayachandran, M. L. Wang, “Selective dichlorocyclopropanation of dicyclopentadiene under controlled phase transfer catalysis conditions”, Applied Catalysis A: General, 206 (2001) 19-28. [10] L. J. Mathias, R. A. Vaidya, “Inverse phase transfer catalysis. First report of a new class of interfacial reactions”, J. Am. Chem. Soc., 108 (1986) 1093-1094. [11] G. Jannes, F. Baudoul, A. Borcy, S. Mommerency, P. Vanderwegen, “The influence of water on cyanide displacement of 1-halobutanes using 18-crown-6 ether as phase transfer catalyst ” Journal of Molecular Catalysis a-Chemical, 107 (1996) 351-358. [12] H. M. Yang, H. C. Liu, “Kinetics for synthesizing benzyl salicylate via solid-liquid phase-transfer catalysis”, Applied Catalysis a-General, 258 (2004) 25-31. [13] L. Li, J. L. Shi, J. N. Yan, H. G. Chen, X. G. Zhao, “SBA-15 supported quaternary ammonium salt: an efficient, heterogeneous phase-transfer catalyst”, Journal of Molecular Catalysis a-Chemical, 209 (2004) 227-230. [14] H. M. Yang, C. C. Huang, “Green Conversion of Phenolic Compound to Benzoate Over Polymer-Supported Phase-Transfer Catalysts”, Catalysis Letters, 128 (2009) 235-242. [15] P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts”, J. Am. Chem. Soc., 101 (1979) 6606-6613. [16] R. Neumann, Y. Sasson, “Mechanism of Base Catalyzed Reactions in Phase-Transfer Systems with Poly(ethylene glycols) as catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451. [17] D. H. Wang, H. S. Weng, “Preliminary Study on the Role Played by the Third Liquid Phase in Phase Transfer Catalysis”, Ind. Eng. Chem. Res, 43 (1988) 2019-2024. [18] D. Masson, S. Magdasi, Y. Sasson, “Role of a third liquid phase in phase transfer catalysis”, J. Org. Chem., 56 (1991) 7229-7232. [19] D. H. Wang, H. S. Weng, “Phase transfer catalytic reaction between n-butyl bromide and sodiu, phenolate-foemation of the third liquid phase and its effect.”, J. Chin. Inst. Chem. Eng., 26 (1995) 147-156. [20] H. S. Weng, H. C. Hsiao, “Synthesis of 2-Phenoxyisobutyric Acid Ethyl Ester by Tri-Liquid-Phase Catalysis. 1. Analysis of factors Affecting the Formation of a Third Liquid Phase.”, Ind. Eng. Chem. Res., 38 (1999) 2911-2918. [21] G. D. Yadav, C. A. Reddy, “Kinetics of the n-Butoxylation of p-Chloronitrobenzene under Liquid-Liquid-Liquid Phase Transfer Catalysis”, Ind. Eng. Chem. Res., 38 (1999) 2245-2253. [22] H. S. Weng, S. M. Kao, H. C. Hsiao, “Synthesis of n-Butyl Phenyl Ether by Tri-Liquid-Phase Catalysis Using Poly ethylene glycols-600 as a catalyst. 1. Analysis of Factor Affecting the Formation of a Third Liquid Phase”, Ind. Eng. Chem. Res., 39 (2000) 2772-2778. [23] G. Jin, T. Ido, S. Goto, “Effect of third-phase properties on benzyl-n-butyl ether synthesis in phase transfer catalytic system”, Catalysis Today, 64 (2001) 279-287. [24] 李淑瑞, 第三液相相間轉移觸媒催化2,4,6-三溴酚之醚化反應動力學研究, 台中市: 國立中興大學化學工程研究所碩士論文, 2003. [25] H. M. Yang, C. C. Li, “Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis”, Journal of Molecular Catalysis a-Chemical, 246 (2006) 255-262. [26] G. Maerker, J. F. Carmichael, W. S. Port, “Glycidl Ester Method of preparation and study of Some reaction Variables”, J. Org. Chem., 26 (1961) 2681. [27] H. M. Yang, C. C. Huang, “Phase-transfer catalyzed benzoylation of 4-chloro-3-methylphenol sodium salt in liquid-liquid system”, Chemical Engineering Communications, 194 (2007) 1187-1200. [28] J. L. Louis, Synthetic Organic Sonochemistry, New York and London: Plenum Press. [29] K. S. Suslick, “The Chemical Effects Of Ultrasound”, Scientific American, 260 (1989) 80-86. [30] M. L. Wang, V. Rajendran, “Ultrasound assisted phase-transfer catalytic epoxidation of 1,7-octadiene - A kinetic study”, Ultrasonics Sonochemistry, 14 (2007) 46-54. [31] M. L. Wang, V. Rajendran, “Kinetics for dichlorocyclopropanation of 1,7-octadiene under the influence of ultrasound assisted phase-transfer catalysis conditions”, Journal of Molecular Catalysis a-Chemical, 273 (2007) 5-13. [32] N. S. Nandurkar, M. J. Bhanushali, S. R. Jagtap, B. M. Bhanage, “Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst”, Ultrasonics Sonochemistry, 14 (2007) 41-45. [33] J. T. Li, and X. L. Li, “An efficient and practical synthesis of methylene dioximes by combination of ultrasound and phase transfer catalyst”, Ultrasonics Sonochemistry, 14 (2007) 677-679. [34] R. S. Davidson, A. M. Patel, A. Safdar, D. Thornthwaite., “The Application Of Ultrasound To The N-Alkylation Of Amines Using Phase Transfer Catalysis”, Tetrahedron Letters, 24 (1983) 5907-5910. [35] M. L. Wang, V. Rajendran, “Ethoxylation of p-chloronitrobenzene using phase-transfer catalysts by ultrasound irradiation - A kinetic study”, Ultrasonics Sonochemistry, 14 (2007) 368-374. [36] H. M. Yang, G. Y. Peng, “Ultrasound-assied third-liquid phase-transfer catalyzed rdterification of sodium salicylate in a continuous two-phase-flow reactor”, Ultrasonics Sonochemistry (2009) doi: 10.1016/j.ultsonch.2009.06.004 [37] J. L. G. Wade, Organic Chemistry: Prentice Hell(2003) [38] M. R. Derrick, E. F. Doehne, A. E. Parker, D. C. Stulik, “some new analytical techniques for use in conservation”, Journal of American Institute for Conservation, 33 (1994) 171-184. [39] http://en.wikipedia.org/wiki/File:Scheme_TEM_en.png.
摘要: 本研究在合成雙活性基相間轉移觸媒,並使用該觸媒合成三液相系統,並輔以超音波在三液相系統中催化4-乙醯基酚化鈉與氯化苯甲醯形成苯甲酸4-乙醯基苯酯的反應。其內容包括探討第三相組成與狀態的改變及催化苯甲酸4-乙醯基苯酯的酯化反應動力探討。雙活性基相間轉移觸媒是由二溴對二甲苯與三丁胺以甲苯為溶劑在70℃下反應生成溴化1,4-二(三丁基銨甲基)苯。 影響第三相形成與其組成的條件包括觸媒添加量效應、水相反應物添加量效應、鹽類效應、氯化鈉添加量效應、形成溫度效應、水量效應、溶劑種類效應、溶劑添加量效應。實驗結果中顯示觸媒、水相反應物、氯化鈉、形成溫度、溶劑種類對第三相的狀態有很大的影響,少量的觸媒或水相反應物使水相中生成較少量的觸媒中間體,而使第三相形成固體的形態,但過多的觸媒與水相反應物添加,產生過多的觸媒中間體而難溶於親水性較高的第三液相,而使第三相有固體的產生。在溫度為20℃時,無法形成第三液相,而溫度在20~30℃間可明顯看出溫度對形成第三相的效應。以氯化鈉與溴化鈉此兩種不同鹽類的添加對第三相生成有很大的區別,添加溴化鈉使觸媒形成Br-Q2+Br-的型式存在,因溶解度低而析出,造成無法與水相反應物形成觸媒中間體。實驗中也使用不同極性的有機溶劑來形成第三相,其中包括了正庚烷與氯苯此兩種極性差異極大的溶劑,結果此兩種有機溶劑不僅皆無法溶解觸媒中間體,且氯苯因界面阻力較小而無法形成第三液相。 在反應機制上,反應區域在第三液相與有機相間的交界面,有機相反應物在界面與觸媒中間體行本質反應,並推得及證實速率表示式可用擬一階線性方程式描述。苯甲酸4-乙醯基苯酯的生成,可在攪拌(250 rpm)與超音波輔助(28 kHz、300 W)下在溫度30℃反應2分鐘可得到97.2%的產率。攪拌速率方面,提高攪拌速率可增加分子之間的碰撞機會,並由實驗中可知在攪拌速率為250rpm時,其質傳阻力對反應速率的影響較小,而能忽略質傳阻力之作用。在超音波方面,超音波在界面產生空穴效應帶來界面混亂的效果,對反應速率常數極為敏感,無超音波振盪時速率常數為0.0013 sec-1,在同樣條件下加入頻率28 kHz、功率為300 W的超音波振盪,使速率常數升為0.0075 sec-1,並藉由改變超音波頻率與功率來討論其變化,頻率越高將使超音波在傳遞時損失的能量越多,使系統獲得的能量越少,反應速率因而降低,故越低的頻率對反應會有越好的效果。
The study is to synthesize dual-site phase-transfer catalyst, and use it to form tri-liquid phases, and investigate the catalytic benzoylation of 4'-hydroxyacetophenone sodium salt and benzoyl chloride to produce 4-acetylphenyl benzoate in ultrasound-assisted tri-liquid-phase system. It includes investigating the changes of the composition and forming condition of the third phase, and the kinetics of synthesizing 4-acetylphenyl benzoate. The dual-site phase-transfer catalyst, 1,4-bis(tributylammoniomethyl)benzene dibromide, was synthesized in toluene solution at 70℃ from p-xylylene dibromide and tributylamine. The operating parameters were amount of catalyst, amounts of aqueous reactant, types of inorganic salt, amounts of sodium chloride, temperature, amounts of water, types and amounts of organic solvent. The results indicate that the amount of catalyst, aqueous reactant and sodium chloride, different forming temperature, types of organic solvent have important influences to form the third phase. A small amount of catalyst or aqueous reactant added can only lead to a small amount of catalytic intermediate, and precipitate some solids in the third phase. However, too much catalyst and aqueous reactant would produce so much catalytic intermediate, as to be hardly dissolved in the third liquid, and that made the third phase forming some solid particles. The third liquid cannot be formed at 20℃, but the temperature effect is apparent between 20℃ and 30℃. There is a large difference to form the third phase when adding sodium chloride or sodium bromide. The catalyst would form the Br-Q2+ Br- style when sodium bromide was added. It cannot react with aqueous reactant to form catalytic intermediate because of its low solubility in water. n-Henptent and chlorobenzene were also used as the organic solvents. The results show these two solvents cannot dissolve the catalytic intermediate and the system did not form the third liquid. In the kinetic part, the reactions dominate to conduct in the interface between the organic and the third-liquid phase. The interface reaction machanisu is thus suggested. The rate of apparent reaction can be described by pseudo-frist-order kinetic equation. The yield of the product of 4-acetylphenyl benzoate yield in the organic phase was obtained 97.2 % in 2 min at the reaction condition of temperature at 30 ℃, agitation speed at 150 rpm, ultrasonic frequency and power at 28 kHz and 300 W. Increasing the agitation speed above 250rpm can enhance the molecular to reduce the effect of mass transfer resistance. It is also sensitive on the catalytic reaction by the effect of ultrasonic irradiation.In the same reaction condition, the rate constant increased from 0.0013 sec-1 to 0.0075 sec-1 when the ultrasonic frequency and power at 28 kHz and 300 W were applied. And try to change the ultrasonic frequency to discuss the variation of product yield. When the higher frequency was used, the fewer energy would be got in the reaction system. A more energy was lost in the transport process when a higher ultrasonic frequency was used. So the lower ultrasonic frequency promotes the faster reaction rates.
URI: http://hdl.handle.net/11455/3777
其他識別: U0005-2707200917464700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200917464700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.