Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3778
標題: 銅/氧化釤-氧化鈰觸媒之製備及其催化甲醇蒸汽重組反應之研究
Preparation of Copper/Samarium Oxide-Cerium Oxide Catalyst for Steam Reforming of Methanol
作者: 王翔平
Wang, Hsiang -Ping
關鍵字: steam reforming of methanol
甲醇蒸汽重組
oxygen-iron-conducting material
nanocatalyst
hydrogen
導氧離子材料
奈米觸媒
氫氣
出版社: 化學工程學系所
引用: [1] 燃料電池論文集,台灣電力公司 [2] 燃料電池之特性與運用,行政院國家科學委員會科學技術資料中心 [3] 官荻偉,探討顆粒性厭氧產氫反應槽中各微生物組成關係對產氫效能的影響,國立中興大學環境工程學系碩士學位論文(2007) [4] 張立德,奈米材料,五南圖書股份有限公司出版 [5] 牟季美,張立德,奈米材料和奈米結構,滄海書局 [6] B. Lindström, and L. J. Pettersson, "Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications", International Journal of Hydrogen Energy, 26 (2001) 923–933 [7] G. Mul, and A. S. Hirschon, "Effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts", Catalysis Today, 65 (2001) 69-75 [8] M. Wang, K. Do. Woo, and D. K. Kim, "Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method", Energy Conversion and Management, 47 (2006) 3235–3240 [9] C.K. Lambert, and R.D. Gonzalez, "Rh/SiO2 catalysts prepared by the sol-gel method", Microporous Materials 12 (1997) 179-188 [10] A. Vazquez, T. Lopez, R. Gomez, and X. Bokhimi, "Synthesis, characterization and catalytic properties of Pt/CeO2-Al2O3 and Pt/La2O3-Al2O3 sol-gel derived catalysts", Journal of Molecular Catalyst A:Chemical 167 (2001) 91-99 [11] G. D. Forster, L. F. Barquín, N. S. Cohen, Q. A. Pankhurst, and I. P. Parkin "Preparation of Fe-Zr-B amorphous alloys by chemical reduction", Journal of Materials Processing Technology 92-93 (1999) 525-528 [12] P.H. Liao and H.M. Yang, "Preparation of catalyst Ni-Cu/CNTs by chemical reduction with formaldehyde for steam reforming of methanol", Catalysis letter 121 (2008) 274-282 [13] 顏世偉,用於甲醇蒸氣重組反應產製氫氣之銅鋅氧化物擔體觸媒之研究,國立成功大學化學工程學系碩士學位論文(2004) [14] 俞天峻,以導氧離子材料擔載鎳觸媒行甲烷蒸氣重組反應之研究,國立清華大學化學工程學系碩士論文(2004) [15] J. B. Wang, W. H. Shih, and T. J. Huang, "Study of Sm2O3-doped CeO2/Al2O3-supported copper catalyst for CO oxidation", Applied Catalysis A: General 203 (2000) 191-199 [16] D. H. Tsai, and T. J. Huang, "Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation", Applied Catalysis A: General 223 (2002) 1-9 [17] J. B. Wang, S. C. Lin, and T. J. Huang, "Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria", Applied Catalysis A: General 232 (2002) 107-120 [18] H. H. Huang, H. P. Chang, Y. T. Chien, M. C. Huang, and J. S. Wang, "Influence of annealing temperature on the grain growth of samarium-doped ceria", Journal of Crystal Growth 287 (2006) 458-462 [19] Y. Okawa, and Y. Hirata, "Sinterability microstructure and electrical properties of Ni/Sm-doped ceria cermet processed with nanometer-sized particles", Journal of the European Ceramic Society 25 (2005) 473-480 [20] S. Rossignol, Y. Madier, and D. Duprez, "Preparation of zirconia-ceria materials by soft chemistry", Catalysis Today 50 (1999) 261-270 [21] G. Colón, F. Valdivieso, M. Pijolat , R.T. Baker, J.J. Calvino, S. Bernal, "Textural and phase stability of CexZr1-XO2 mixed oxides under high temperature oxidizing conditions", Catalysis Today 50 (1999) 271-284 [22] J. Kašpar, P. Fornasiero, M. Graziani, "Use of CeO2-based oxides in the three-way catalysis", Catalysis Today 50 (1999) 285-298 [23] P. L. Chen and I. W. Chen, "Reactive cerium oxide powders by the homogeneous precipitation method", J. Am. Ceram. Soc. 76 (1993) 1577-1583 [24] J. G. Li, T. Ikegami, Y. Wang and T. Mori, "Reactive ceria nanopowders via carbonate precipation", J. Am. Ceram. Soc. 85 (2002) 2376-2378 [25] W. H. Cheng, "Reavtive and XRD studies on Cu based methanol decomposition catalysts:Role of constituents and development of high-activity multicomponent catalysts", Applied Catalysis A:General 130 (1995) 13-30 [26] A.P. Tsai, and M. Yoshimura, "Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol", Applied Catalysis A: General 214 (2001) 237–241 [27] T. Tanabe, S. Kameoka, and A. P. Tsai, "A novel catalyst fabricated from Al–Cu–Fe quasicrystal for steam reforming of methanol", Catalysis Today 111 (2006) 153–157 [28] S. Kameoka, T. Tanabe, and A. P. Tsai, "Al–Cu–Fe quasicrystals for steam reforming of methanol: a new form of copper catalysts", Catalysis Today 93–95 (2004) 23–26 [29] C. Yang, J. Ren, and Y. Sun, "Synergistic promotion of CeO2 and La2O3 in Pd/Al2O3 catalysts for methanol decomposition", Catalysis Communications 2 (2001) 353-356 [30] Z. Wang, W. Wang, G. Lu, "Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation", International Journal of Hydrogen Energy 28 (2003) 151-158 [31] F. Pinzari, P. Patrono, and U. Costantino, "Methanol reforming reactions over Zn/TiO2 catalysts", Catalysis Communications 7 (2006) 696-700 [32] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, and S. Imamura, "Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts", Applied Catalysis A:General 281 (2005) 69-73 [33] O. Yamazaki, K. Tomishige, and K. Fujimoto, "Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon", Applied Cataltsis A:General 136 (1996) 49-56 [34] Y. Matsumura, and T. Nakamori, "Steam reforming of methane over nickel catalysts at low reaction temperature", Applied Catalysis A:General 258 (2004) 107-114 [35] S. Rakass, H. O. Hassani, P. Rowntree, and N. Abatzoglou, "Steam reforming of methane over unsupported nickel catalysts", Journal of Power Sources 158 (2006) 485-496 [36] A. N. Fatsikostas and X. E. Verykios, "Reaction network of steam reforming of ethanol over Ni-based catalysts", Journal of Catalysis 225 (2004) 439-452 [37] V. Fierro, O. Akdim, H. Provendier, and C. Mirodatos, "Ethanol oxidative steam reforming over Ni-based catalysts", Journal of Power Sources 145 (2005) 659-666 [38] G. Mul, and A. S. Hirschon, "Effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts", Catalysis Today 65 (2001) 69-75 [39] T. Takahashi, M. Inoue, and T. Kai, "Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys", Applied Catalysis A:General 218 (2001) 189-195 [40] N. Iwasa, T. Mayanagi, W. Nomura, M. Arai, and N. Takezawa, "Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol", Applied Catalysis:General 248 (2003) 153-160 [41] S. Liu, K. Takahashi, and M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:effect of Pd loading", Catalysis Today 87 (2003) 247-253 [42] S. Liu, K. Takahashi, K. Uematsu, and M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:effect of the addition of a third metal component", Applied Catalysis A:General 277 (2004) 265-270 [43] S. Liu, K. Takahashi, K. Uematsu, and M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO", Applied Catalysis A:General 283(2005) 125-135 [44] S. Liu, K. Takahashi, K. Fuchigami, and K. Uematsu, "Hydrogen production by oxidative methanol reforming on Pd/ZnO:Catalyst deactivation", Applied Catalysis A:General 299 (2006) 58-65 [45] S. Liu, K. Takahashi, H. Eguchi, and K. Uematsu, "Hydrogen production by oxidative methanol reforming on Pd/ZnO:Catalyst preparation and supporting materials", Catalysis Today 129 (2007) 287-292 [46] 李志甫, X-射線法, 高立圖書有限公司 [47] 王亦凱, 邱宏明, 李秉傑, 非均勻系催化原理與應用, 國立編譯館 [48] http://www.hk-phy.org/atomic_world/tem/tem02_c.html [49] http://www.chemedu.ch.ntu.edu.tw/lecture1/GC.htm [50] T. D. Nguyen, D. Mrabet, and T. O. Do, "Controlled Self-Assembly of Sm2O3 Nanoparticles into Nanorods:Simple and Large Scale Synthesis using Bulk Sm2O3 Powders", J. Phys. Chem. C 2008, 112, 15226-15235 [51] 葉怡成,實驗計劃法—製程與產品最佳化,五南圖書股份有限公司 [52] 陳順與,鄭碧娥,實驗設計,華泰書局 [53] J. Papavasiliou, G. Avgouropoulos, and T. Ioannides, "Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming", Applied Catalysis B:Environmental 69 (2007) 226-234
摘要: 本論文研究目的為將活性金屬銅擔持於氧化釤摻混氧化鈰表面,將其應用於甲醇蒸汽重組反應。觸媒製備變數包括不同銅含量、氧化釤和氧化鈰不同比例、不同煅燒溫度、不同種類分散劑、不同分散劑添加量、不同攪拌方式、促進劑不同添加量、不同先驅物濃度。甲醇蒸汽重組反應之變數包括不同水量對甲醇莫耳數比、不同重量空間流速與觸媒穩定性測試。 實驗結果顯示,銅添加量為25wt%之觸媒反應活性較高。氧化釤和氧化鈰的比例為Sm2O3(25)-CeO2(75)其氫氣產率最佳。不同煅燒溫度會影響其顆粒大小且在煅燒溫度500℃時可以提升氫氣產率。添加分散劑溴化十六烷基三甲基四級銨鹽(CTMAB)其表面積較大且有很高的反應活性。分散劑不同添加量會影響表面積和孔洞體積。超音波製備的觸媒活性比超音波和攪拌還要好。添加少量氧化鋅為促進劑時,氫氣產率在280℃,即達到約95%。先驅物濃度0.007M與0.005M的顆粒大小較小,但產氫速率卻比先驅物濃度0.01M時低。 以觸媒[Cu(80)/ZnO(20)](25)/[Sm2O3(25)-CeO2(75)](75)進行甲醇蒸汽重組反應變因中,當水與甲醇莫耳數比為1.3mol/mol與反應溫度280℃時,氫氣產率為95%,單位產氫速率可達到110.3mmmol/s*kg.cat。重量空間流速以7.7hr-1為反應活性最好。觸媒穩定性測試過程中,反應時間達100小時時,活性衰退63%,其二氧化碳選擇率可以持續維持在96%以上。
In the thesis, the purpose of this study is to prepare nanocatalyst Cu supported on Sm2O3-CeO2 and to apply it on steam reforming of methanol. The parameters of catalyst preparation include the different amounts of Cu, ratio of samarium oxide to cerium oxide, temperature of calcinations, types of dispersant, amount of dispersant, method of mixing, amount of promoter, concentration of precursor. Operating conditions in steam reforming of methanol are molar ratio of H2O/CH3OH, weight hourly space velocity, and stability of catalysts. The results show that the amount of copper at 25wt% has a higer activity than others. The ratios of samarium oxide to cerium oxide at 25wt% and 75wt% made the best hydrogen yield. Different calcination temperatures can influence the pore size of catalyst, and the temperature of calcination at 500℃ enhanced the hydrogen yield greatly. Adding the dispersant of 1-Hexadecyl trimethyl ammonium bromide can make the catalyst obtain large surface area and have high activities. The content of dispersant can influence the surface area and total pore size of the that using catalyst. The catalystic activity using method of ultrasound is better than ultrasound and stirring. Adding few ZnO as promoter to Cu/Sm2O3-CeO2, the hydrogen yield was obtained near 95% at 280℃. The concentrations of precursor at 0.007M and 0.005M made the particles more smaller, but the hydrogen production rate was lower than that at 0.01M. The catalyst of [Cu(80)/ZnO(20)](25)/[Sm2O3(25)-CeO2(75)](75) was used to proceed the reaction of steam reforming of methanol. With 1.3 of molar ratio of water to methanol, the hydrogen yield was 95% and the hydrogen production rate was 110.3mmmol/s*kg.cat at 280℃. The best performance of the catalyst was at 7.7hr-1 of weight hourly space velocity. In 100-hour duration of test, the activity decreased about 63%, and CO2 selectivity still kept at above 96% after 100h of reaction.
URI: http://hdl.handle.net/11455/3778
其他識別: U0005-2707200917492600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200917492600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.