Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3782
標題: 溫度和酸鹼應答型固態脂質奈米粒子包覆mitoxantrone之製備及性質探討
Preparation and characterization of temperature and pH responsive mitoxantrone-loaded solid lipid nanoparticles
作者: 羅秀玉
Lo, Hsiu-Yu
關鍵字: solid lipid nanoparticles
固態脂質奈米粒子
mitoxantrone
double emulsion
cancer therapy
mitoxantrone
二次乳化法
癌症治療
出版社: 化學工程學系所
引用: 1. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004; 303(5665): 1818-1822. 2. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-6392. 3. Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 1999; 190(1): 49-56. 4. Zamboni WC, Gervais AC, Egorin MJ, Schellens JH, Zuhowski EG, Pluim D, et al. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 2004; 53(4): 329-336. 5. Kong G, Dewhirst MW. Hyperthermia and liposomes. Int J Hyperthermia 1999; 15(5): 345-370. 6. Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 1996; 36(5): 1177-1187. 7. Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 2001; 53(3): 285-305. 8. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999; 62(1-2): 115-127. 9. Wei H, Zhang XZ, Zhou Y, Cheng SX, Zhuo RX. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 2006; 27(9): 2028-2034. 10. Hsu MH, Su YC. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomed Microdevices 2008; 10(6): 785-793. 11. Dong LC, Hoffman AS. A novel approach for preparation of pH-sensitive hydrogel for enteric drug delivery. J Control Release 1991; 15(2): 141-152. 12. Brondsted H, Kopecek J. Hydrogels for site-specific oral drug delivery: synthesis and characterization. Biomaterials 1991; 12(6): 584-592. 13. Siegel RA, Firestone BA. pH dependent equilibrium swelling properties of hydrophilic polyelectrolyte copolymer gels. Macromolecules 1988; 21(11): 3254-3259. 14. Okanoa T, Bae YH, Jacobs H, Kim SW. Thermally on-off switching polymers for drug permeation and release. J Control Release 1990; 11(1-3): 255-265. 15. Bae YH, Okano T, Kim SW. Temperature dependence of swelling of crosslinked poly(N,N-alkyl substituted acrylamide) in water. Journal of Polymer Science Part B: Polymer Physics 1990; 28(6): 923-936. 16. Hoffman AS. Application of thermally reversible polymers and hydrogels in therapeutics. J Control Release 1987; 6(1): 297-305. 17. AOKI T, KAWASHIMA M, KATONO H, SANUI K, OGATA N, OKANO T, et al. Temperature-responsive interpenetrating polymer network constracted with poly(acrylic acid) and poly(N,N-dimethylacrylamide). Macromolecules 1994; 27(4): 947-952. 18. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989; 49(16): 4373-4384. 19. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumours. Int J Hyperthermia 1995; 11(2): 211-216. 20. van Sluis R, Bhujwalla ZM, Raghunand N, Ballesteros P, Alvarez J, Cerdan S, et al. In vivo imaging of extracellular pH using 1H MRSI. Magn Reson Med 1999; 41(4): 743-750. 21. Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett 2005; 5(2): 325-329. 22. Tian Y, Bromberg L, Lin SN, Hatton TA, Tam KC. Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers. J Control Release 2007; 121(3): 137-145. 23. Helgason T, Awad TS, Kristbergsson K, McClements DJ, Weiss J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci 2009; 334(1): 75-81. 24. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-196. 25. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-177. 26. Westesen K, Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? International Journal of Pharmaceutics 1995; 115(1): 129-131. 27. Wüstneck R, Enders P, Wüstneck N, Pison U, Miller R, Vollhardt D. Surface dilational behaviour of spread dipalmitoyl phosphatidyl glycerol monolayers. PhysChemComm 1999; 2: 50-61. 28. Minones J, Jr., Dynarowicz-Latka P, Minones J, Rodriguez Patino JM, Iribarnegaray E. Orientational changes in dipalmitoyl phosphatidyl glycerol Langmuir monolayers. J Colloid Interface Sci 2003; 265(2): 380-385. 29. Severcan F, Dorohoi D-O. FTIR studies of temperature influence on the DPPG model membrane Journal of Molecular Structure 2008; 887(1-3): 117-121. 30. Zwierzykowski W, Donata K. The interactions of saturated fatty acids at the dodecane/water interface and their sodium salts at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999; 160(3): 183-188. 31. Zwierzykowski W, Konopacka-Lyskawa D. Estimation of Dielectric Constants of Adsorbed Monolayers for Some Sodium Soap Solutions. J Colloid Interface Sci 1999; 218(1): 265-268. 32. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504. 33. Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin International Journal of Pharmaceutics 1993; 89(1): R9-R12 34. Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci 2004; 93(8): 1993-2008. 35. Li Y, Taulier N, Rauth AM, Wu XY. Screening of lipid carriers and characterization of drug-polymer-lipid interactions for the rational design of polymer-lipid hybrid nanoparticles (PLN). Pharm Res 2006; 23(8): 1877-1887. 36. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006; 23(7): 1574-1585. 37. Neuhaus O, Kieseier BC, Hartung HP. Mitoxantrone in multiple sclerosis. Adv Neurol 2006; 98: 293-302. 38. van Dalen EC, van der Pal HJ, Bakker PJ, Caron HN, Kremer LC. Cumulative incidence and risk factors of mitoxantrone-induced cardiotoxicity in children: a systematic review. Eur J Cancer 2004; 40(5): 643-652. 39. Kroger N, Damon L, Zander AR, Wandt H, Derigs G, Ferrante P, et al. Secondary acute leukemia following mitoxantrone-based high-dose chemotherapy for primary breast cancer patients. Bone Marrow Transplant 2003; 32(12): 1153-1157. 40. Li C, Cui J, Wang C, Li Y, Zhang H, Wang J, et al. Encapsulation of mitoxantrone into pegylated SUVs enhances its antineoplastic efficacy. Eur J Pharm Biopharm 2008; 70(2): 657-665. 41. Johnson JL, Ahmad A, Khan S, Wang YF, Abu-Qare AW, Ayoub JE, et al. Improved liquid chromatographic method for mitoxantrone quantification in mouse plasma and tissues to study the pharmacokinetics of a liposome entrapped mitoxantrone formulation. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 799(1): 149-155. 42. Ugwu S, Zhang A, Parmar M, Miller B, Sardone T, Peikov V, et al. Preparation, characterization, and stability of liposome-based formulations of mitoxantrone. Drug Dev Ind Pharm 2005; 31(2): 223-229. 43. Pestalozzi B, Schwendener R, Sauter C. Phase I/II study of liposome-complexed mitoxantrone in patients with advanced breast cancer. Ann Oncol 1992; 3(6): 445-449. 44. Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006; 28(1-2): 86-95. 45. Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers Advanced Drug Delivery Reviews 1995; 16(2-3): 195-214 46. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 1994; 83(4): 601-606. 47. Graham NB, Zulfiqar M. Interaction of poly(ethylene oxide) with solvents: 3. Synthesis and swelling in water of crosslinked poly(ethylene glycol) urethane networks. Polymer 1989; 30(11): 2130-2135 48. Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 2000; 202(1-2): 1-10. 49. O''Hare KB, Hume IC, Scarlett L, Chytry V, Kopeckova P, Kopecek J, et al. Effect of galactose on interaction of N-(2-hydroxypropyl)methacrylamide copolymers with hepatoma cells in culture: preliminary application to an anticancer agent, daunomycin. Hepatology 1989; 10(2): 207-214. 50. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, et al. Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer Journal of Controlled Release 1990; 11(1-3): 269-278 51. Eastman. Eastman vitamin E TPGS NF applications and properites. Eastman chemical company, 2005. 52. García-Fuentes M, Torres D, Alonso MJ. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules Colloids and Surfaces B: Biointerfaces 2002; 27(2-3): 159-168 53. Guillaume P, François G, Monique M, Patrick H. Cationic polymerization of 2,4,6,8-tetramethylcyclotetrasiloxane processed by tuning the pH of the miniemulsion Polymer 2005; 46(25): 11213-11218
摘要: 本研究主要探討以固態脂質(trilaurin)為基材製備成固態脂質奈米粒子(solid lipid nanoparticle, SLN),探討其製備方法、物理性質及藥物釋放行為。利用二次乳化法製備包覆親水性抗癌藥物-mitoxantrone之SLN,實驗結果顯示,配方中添加1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol (DPPG)和lauric acid sodium salt負電荷之脂質,利用正負電荷相吸的原理,可將mitoxantrone包覆於SLN內。DPPG配方之平均粒徑範圍為164~190 nm,lauric acid sodium salt配方之平均粒徑範圍為220~250 nm。DPPG配方之包覆率大於90%以上,lauric acid sodium salt配方之包覆率為60%。於DPPG配方中添加d-α-Tocopheryl Polyethylene glycol succinate (TPGS),可以降低配方粒徑20 nm,但是同時也降低藥物包覆率5~10 %。藉由表面電位分析儀發現製備之奈米粒子表面均帶有負電荷,DPPG配方具有強的負電荷(-38.5 mV),在添加TPGS的配方中,同時也具有強的負電荷(-29.52 ~ -31.9 mV),因此DPPG配方之間彼此具有高的排斥性而不易聚集發生粒徑變大現象,配方貯存於4℃下經過35天仍保持良好的穩定性。在lauric acid sodium salt配方表面電荷為-4.51 mV,因此容易發生聚集而使粒徑變大,甚至發生沉澱的現象。經由DSC的熱性質分析得知,各配方之熔點會較trilaurin之熔點低2~3 ℃,而且波峰會變的較寬,此現象是因為配方中具有多種材料所組成,經過吸熱的熔化過程所產生的相變化情形將會與trilaurin不同,而造成熔點會有差異。利用穿透式電子顯微鏡發現TD、TDT6和TDT12配方之SLN均為實心圓球狀。 在藥物釋放實驗中,藉由不同溫度(25oC~50oC)和不同pH值(pH2.2~pH7.4)的調控觀察藥物釋放行為。DPPG配方加熱至50oC於pH2.2釋放環境中,經過三天後可達100%釋放量,而lauric acid sodium salt配方加熱至50oC於pH5緩衝溶液,經過2小時即可達100%釋放量。當釋放環境的pH低於負電荷脂質之pKa時,負電荷脂質與mitoxantrone所形成的複合物會於此時解離,即可將mitoxantrone釋放出來。在高於pKa的環境下,mitoxantrone所形成緊密的複合物,造成釋放速率變緩慢,此時會隨著溫度增加而增加藥物釋放速率。於配方中添加TPGS有助於藥物的溶解度,因而可促進藥物釋放速率。 綜合以上SLN包覆mitoxantrone藥物的實驗結果發現,利用正負電荷相吸的原理,可以將親水性mitoxantrone藥物利用二次乳化法包覆於SLN,此SLN載體同時具有酸鹼和溫度應答性,SLN將有潛力作為mitoxantrone藥物傳送的載體,未來將可應用於癌症治療等領域。
Aim of this study was to investigate the influence of the preparation, physical characterizations and drug release profiles on the solid lipid nanoparticles (SLN) prepared using trilaurin as the principal material. A hydrophilic drug, mitoxantrone-loaded SLNs were prepared by double emulsion (w/o/w) method. The addition of negative charged lipid, such as 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol (DPPG) and lauric acid sodium salt which using of positive and negative charge of the principle of attraction, mitoxantrone could be loaded in the SLN. The mean particle size of DPPG formula was between 164 and 190 nm and then lauric acid sodium salt formula was between 220 and 250 nm. The encapsulation efficiency of DPPG formula was above 90% and then lauric acid sodium salt formula was 60%. Additionally, the surface of the particles could be modified through the incorporation of d-α-Tocopheryl Polyethylene glycol succinate (TPGS) into the formulation. TPGS could decrease the formulation particle size but also decrease encapsulation efficiency. Zeta potential of DPPG formula was -38.5 mV by the zeta potential analyzer. The negative charge could give the particles more stable. DPPG formaula had good stability after 35 days at 4oC. Zeta potential of lauric acid sodium salt formula was -4.51 mV by the zeta potential analyzer. The lower zeta potential could occur aggregation. The result of DSC analysis, the melting point of SLN formula could decrease 2 and 3 oC and the peak became more borad. This was because the formulations composed of a variety of materials, the endothermic process of formulations phase change would be different trilaurin, there would be differences caused by the melting point. The morphology of TD, TDT6 and TDT12 formula were solid and spherical shape by using the transmission electron microscope. In the drug release experiments, the DPPG formula could reach 100% release content after 3 days at 50oC and pH2.2 relase medium. The lauric acid sodium salt formula could reach 100% release content after 2 hours at 50 oC and pH5 release medium. Controlled release with pH and temperature from DPPG and lauric acid sodium salt formulas could be explained the pKa of different function groups were main effect on the release profile. The negative charge lipids were protonated, the mitoxantrone-lipid complex were dissociated that it could be improve release rate. Higher than the pKa of the lipid in the relase medium, mitoxantrone integrated with negative charge lipids closely, caused slow release rate, at this condition as the temperature increased the rate of drug release increased. In addition, TPGS could improve solubility of drug that would enhance drug release rate. These results demonstrated mitoxantrone-loaded solid lipid nanoparticles had pH and temperature responsive. The mitoxantrone-loaded solid lipid nanoparticles would have potential for cancer therapy combine with hyperthermia.
URI: http://hdl.handle.net/11455/3782
其他識別: U0005-2707200922381400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200922381400
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.