Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3798
DC FieldValueLanguage
dc.contributor鄭紀民zh_TW
dc.contributor顏怡文zh_TW
dc.contributor.advisor陳志銘zh_TW
dc.contributor.author林易緯zh_TW
dc.contributor.authorLin, Yi-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T05:32:48Z-
dc.date.available2014-06-06T05:32:48Z-
dc.identifierU0005-0607201017365400zh_TW
dc.identifier.citation[1] T. V. Hughes, and C. R. Chambers, "Manufacture of carbon filaments", US Patent No. 405, (1889). [2] R. Iley, and H. L. Riley, "The deposition of carbon on vitreius silica", J. Chem. Soc., pp. 1362-1366 (1948). [3] R. T. K. Baker, "Catalytic growth of carbon filaments", Carbon, Vol. 27, pp. 315-323 (1989). [4] S. Iijima, "Helical microtubles of graphitic carbon", Nature, Vol. 354, pp. 56-58 (1991). [5] S. H. Yoon, C. W. Park, H. Yang, Y. Korai, I. Mochida, R. T. K. Baker , and N. M. Rodriguez, "Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries", Carbon, Vol. 42, pp. 21-32 (2004). [6] K. Suzuki, T. Iijima, and M. Wakihara, "Electrode characteristics of pitch-based carbon fiber as an anode in lithium rechargeable battery", Electr. Act., Vol. 44, pp. 2185-2191 (1999). [7] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. S. Dresselhaus, "Vapor-grown carbon fibers (VGCFs) Basic properties and their battery applications", Carbon, Vol. 39, pp. 1287-1297 (2001). [8] T. Morita, and N. Takami, "Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion", Electr. Act., Vol. 49, pp. 2591-2599 (2004). [9] R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado, R. Stoyanov, E. Zhecheva, and C. Merino, "Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study", Carbon, Vol. 42, pp. 2153-2161 (2004). [10] A. Yokoyama, Y. Sato, Y. Nodasaka, and S. Yamamoto, "Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats", Nano letter, Vol. 5, pp. 157-161 (2005). [11] R. L. Pricea, M. C. Waidb, K. M. Haberstroha, and T. J. Webstera, "Selective bone cell adhesion on formulations containing carbon nanofibers", Biomaterials, Vol. 24, pp. 1877-1887 (2003). [12] M. Tsuji, M. Kubokawa, R. Yano, and N. Miyamae, "Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells", Langmuir, Vol. 23, pp. 387-390 (2007). [13] Y. L. Hsin, K. C. Hwang, and C. T. Yeh, "Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells", J. Am. Chem. Soc., Vol. 129, pp. 9999-10010 (2007). [14] V. Vamvakaki, K. Tsagaraki, and N. Chaniotakis, "Carbon nanofiber-based glucose biosensor", Anal. Chem., Vol. 78, pp. 5538-5542 (2006). [15] H. Li, J. Li, and C. Gu, "Local field emission from individual vertical carbon nanofibers grown on tungsten filament", Carbon, Vol. 43, pp. 849-853 (2005). [16] J. M. Blackman, J. W. Patrick, and A. Arenillas, "Activation of carbon nanofibres for hydrogen storage", Carbon, Vol. 44, pp. 1376-1385 (2006). [17] H. Zhu, X. Li, L. Ci, C. Xu, D. Wu, and Z. Mao, " Hydrogen storage in heat-treated carbon nanofibers prepared by the vertical floating catalyst method", Mater. Chem. Phys., Vol. 78, pp. 670-675 (2003). [18] R. Bacon, "Growth, structure, and properties of graphite whiskers", J. Appl. Phys., Vol. 31, pp. 283-290 (1960). [19] H. W. Kroto, J. R. Heath, S. C. O Brien, R. F. Curl, R. E. Smalley, "C60:Buckminsterfullerene", Nature, Vol. 318, pp. 162-163 (1985). [20] L. P. Biro , C. A. Bernardo, G. G. Tibbetts, and P. Lambin, "Carbonfilaments and nanotubes: common origins, differing applications", Dorecht/Boston/London Patent, (2001). [21] 李元堯, "奈米碳簇材料簡介", 化工技術, Vol. 17, pp. 98 (2009). [22] Ph. Serp, R. Feurer, Ph. Kalck, Y. Kihn, J. L. Faria, and J. L. Figueiredo, "A chemical vapour deposition process for the production of carbon nanospheres", Carbon, Vol. 39, pp. 621-626 (2001). [23] B. Xu, J. Guo, X. Wang, X. Liu, and H. Ichinose, "Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution", Carbon, Vol. 44, pp. 2631-2634 (2006). [24] T. Kizuka, R. Kato, and K. Miyazawa, "Structure of hollow carbon nanocapsules synthesized by resistive heating", Carbon, Vol. 47, pp. 138-144 (2009). [25] M. Inagaki, "Discussion of the formation of nanometric texture in spherical carbon bodies", Carbon, Vol. 35, pp. 711-713 (1997). [26] M. Endo, and H. W. Kroto, "Formation of carbon nanofiber", J. Phys. Chem. B., Vol. 96, pp. 6941-6944 (1992). [27] N. M. Rodriguez, A. Chambers, and R. T. K. Baker, "Catalytic engineering of carbon nanostructures", Langmuir, Vol. 11, pp. 3862-3866 (1995). [28] M. Endo, Y. A. Kim, T. Hayashi, and Y. Fukai, "Structural characterization of cup-stacked-type nanofibers with an entirely hollow core", Appl. Phys. Lett., Vol. 80, pp. 1267-1269 (2002). [29] Y. Qin, Q. Zhang, and Z. Cui, "Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene", Journal of Catalysis, Vol. 223, pp. 389-394 (2004). [30] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes", Carbon, Vol. 33, pp. 883-891 (1995). [31] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, "Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene", Journal of Catalysis, Vol. 6, pp. 51-62 (1972). [32] A. Oberlin, and M. Endo, "Filamentous growth of carbon through benzene decomposition", J. Crystal Growth, Vol. 32, pp. 335-349 (1976). [33] T. Baird, J. R. fryer, and B. Grant, "Carbon formation on iron and nickel foils by hydrocarbon pyrolysisreactions at 700°C", Carbon, Vol. 12, pp. 591-602 (1974). [34] J. J. Wang, M. Y. Zhu, R.A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway, "Free-standing subnanometer graphite sheets", Appl. Phys. Lett., Vol. 85, pp. 1265-1267 (2004). [35] J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B.C. Holloway, "Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition", Carbon, Vol. 42, pp. 2867-2872 (2004). [36] M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, and X. Zhao, "A mechanism for carbon nanosheet formation", Carbon, Vol. 45, pp. 2229-2234 (2007). [37] C. M. Chen, P. Y. Shih, and Y. W. Lin, "Synthesis of nanostructured carbon Materials on a Tin thin film using phenol formaldehyde as the carbon source", Journal of Elecrtronic Materials, Vol. 38, pp. 193-199 (2009). [38] J. Du, Z. Liu, Z. Li, B. Han, Z. Sun, and Y. Huang, "Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route", Materials Letters, Vol. 59, pp. 456-458 (2005). [39] J. M. She, and Y. T. Feng, "Formation of flower-like carbon nanosheet aggregations and their electrochemical application", J. Phys. Chem. C, Vol. 112, pp. 13114-13120 (2008). [40] Y. H. Wang, S. C. Chiu, K. M. Lin, and Y. Y. Li, "Formation of carbon nanotubes from polyvinyl alcohol using arc-discharge method", Carbon, Vol. 42, pp. 2535-2541 (2004). [41] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic growth of single-walled nanotubes by laser vaporization", Chemical Physics Letters, Vol. 243, pp. 49-54 (1995). [42] A. Chambers, T. Nemes, and N. M.Rodriguez, "Catalytic behavior of graphite nanofiber supported nickel particles. 1. comparison with other support media", J. Phys. Chem. B., Vol. 102, pp. 2251-2258 (1998). [43] M. Ishioka, T. Okada, K. Matsubara, and M. Endo, "Formation of vaper-grown carbon fibers in CO-CO2-H2 mixtures, II.influen of catalyst", Carbon, Vol. 30, pp. 865-868 (1992). [44] V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, and P. Lambin, "Catalytic production and purification of nantubules having fullerene-scale diameters", Carbon, Vol. 33, pp. 1727-1738 (1995). [45] M. Jayasankar, R. Chand, S. K. Gupta, and D. Kunzru, "Vapor-grown carbon fibers from benzene pyrolysis", Carbon, Vol. 33, pp. 253-258 (1995). [46] G. G. Kuvshinov, Y. I. Mogilnykh, and D. Guvshinov, "Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition", Carbon, Vol. 37, pp. 1239-1246 (1999). [47] M. Ishiok, T. Okada, and K. Matsubara, "Formation of vaper-grown carbon fibers in CO-CO2-H2 mixtures, I.influen of Carrier gas composition", Carbon, Vol. 30, pp. 859-863 (1992). [48] G. G. Tibbetts, and D. W. Gorkiewvzz, "A new reactor for growing carbon fibers from liquid and vapor phase hydrocarbons", Carbon, Vol. 31, pp. 809-814 (1993). [49] M. Ishiok, T. Okada, and K. Matsubara, "Formation and characteristics of vapor grown carbon fibers prepared in linz-donawitz converter gas", Carbon, Vol. 30, pp. 975-979 (1992). [50] G. C. Tibbetts, C. A. Bernardo, and D. W. Gorkiewicz, "Role of sulfur in the production of carbon fibers in the vapor phase", Carbon, Vol. 32, pp. 569-576 (1994). [51] A. Hoquea, M. K. Alamb, and G. G. Tibbettsc, "Synthesis of catalyst particles in a vapor grown carbon fiber reactor", Chem. Eng. Sci., Vol. 56, pp. 4233-4234 (2001). [52] H. M. Cheng, F. Li, G. Su, and H. Y. Pan, "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons", Appl. Phys. Lett., Vol. 72, pp. 3282-3284 (1998). [53] L. Ci, Y. Li, B. Wei, J. Liang, C. Xu, and D. Wu, "Preparation of carbon nanofibers by the floating catalyst method", Carbon, Vol. 38, pp. 1933-1937 (2000). [54] C. Singh, T. Quested, and C. B. Boothroyd, "Synthesis and characterization of carbon nanofibers produced by the floating catalyst method", J. Phys. Chem. B., Vol. 106, pp. 10915-10922 (2002). [55] P. Vinduska, J. Janik, and D. Buc, "Investigation of conditions for preparation of oriented nanotubes at department of microelectronics in a modified plasma-enhanced hot filament chemical vapor deposition reactor", Physica E, Vol. 40, pp. 44-58 (2008). [56] D. Luxembourg, G. Flamant, and D. Laplaze, "Solar synthesis of single-walled carbon nanotubes at medium scale", Carbon, Vol. 43, pp. 2302-2310 (2005). [57] T. C. Liu, and Y. Y. Li, "Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method", Carbon, Vol. 44, pp. 2045-2050 (2006). [58] R. Katoh, Y. Tasaka, E. Sekreta, M. Yumura, F. Ikazaki, Y. Kakudate, and S. Fujiwara, "Sonochemical production of a carbon nanotube", Ultrasonics Sonochemistry, Vol. 6, pp. 185-187 (1999). [59] K. ouchi, "Infra-red study of structural changes during the pyrolysis of a phenol-formaldehyde resin", Carbon, Vol. 4, pp. 59-66 (1966). [60] K. A. Trick, and T. Saliba, "Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite", Carbon, Vol. 33, pp. 1509-1515 (1995). [61] A. Oya, and N. Kasahara, "Preparation of thin carbon fibers from phenol–formaldehyde polymer micro-beads dispersed in polyethylene matrix", Carbon, Vol. 38, pp. 1141-1144 (2000). [62] K. Wang, W. Zhang, and R. Phelan, "Direct fabrication of well-aligned free-Standing mesoporous carbon nanofiber arrays on silicon substrates", J. Am. Chem. Soc., Vol. 129, pp. 13388-13389 (2007). [63] I. Stamatin, A. Morozan, A. Dumitru, V. Ciupina, G. Prodan, J. Niewolski, and H. Figiel, "The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins", Physica E, Vol. 37, pp. 44-48 (2007). [64] C. M. Chen, and P. Y. Shih, "A peculiar composite structure of carbon nanofibers growing on a microsized tin whisker", Journal of Materials Research, Vol. 23, pp. 2668-2673 (2008). [65] Y. W. Lin, P. Y. Shih, and C. M. Chen, "A current-induced localized heating technique for fabrication of carbon nanomaterials", Journal of Alloys and Compounds, Vol. 492, pp. 521 (2009). [66] N. Sano, H. Akazawaa, T. Kikuchib, and T. Kankia, "Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen ", Carbon, Vol. 41, pp. 2159-2162 (2003). [67] C. W. Huang, S. C. Chiu, W. H. Lin, and Y. Y. Li, "Preparation and characterization of porous carbon nanofibers from thermal decomposition of poly(ethylene glycol)", J. Phys. Chem. C, Vol. 112, pp. 926-931 (2008). [68] 林豐智及永山時男, 日本化學會誌, Vol. 6, pp. 1050 (1984). [69] R. Raja, T. Khimyak, J. M. Thomas, S. Hermans, and B. F. G. Johnson, "Single-step, highly active, and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds", Angew.Chem. Int. Ed., Vol. 40, pp. 2638-2642 (2001). [70] R. Raja, G. Sankar, S. Hermans, D. S. Shephard, S. Bromley, J. M. Thomas, and B. F. G. Johnson, "Preparation and characterization of highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst.", Chem. Commun., Vol. 16, pp. 1571-1572 (1999). [71] C. M. Chen, Y. M. Dai, J. G. Huang, and J. M. Jehng, "Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method", Carbon, Vol. 44, pp. 1808-1820 (2006). [72] 吳榮宗, "工業觸媒概論". 新竹市: 國興出版社, (1989). [73] 顏秀慧, "沸石對揮發性有機物吸附行為之研究", 國立台灣大學環境工程研究所博士論文, pp. (1998). [74] A. Okamoto, and H. Shinohara, "Control of diameter distribution of single-walled carbon nanotubes using the zeolite-CCVD method at atmospheric pressure", Carbon, Vol. 43, pp. 431-436 (2005). [75] P. Ciambelli, D. Sannino, M. Sarno, A. Fonseca, and J. B. Nagy, "Selective formation of carbon nanotubes over Co-modified beta zeolite by CCVD", Carbon, Vol. 43, pp. 631-640 (2005). [76] A. Lu, W. Schmidt, S. Tatar, B. Spliethoff, J. Popp, W. Kiefer, and F. Schuth, "Formation of amorphous carbon nanotubes on ordered Mesoporous silica support", Carbon, Vol. 43, pp. 1811-1814 (2005). [77] C. W. Huanga, H. C. Wua, W. H. Lina, and Y. Y. Li, "Temperature effect on the formation of catalysts for growth of carbon nanofibers", Carbon, Vol. 47, pp. 795-803 (2009). [78] Y. W. Lin, P. Y. Shih, and C. M. Chen, "A current-induced localized heating technique for fabrication of carbon nanomaterials", Journal of Alloys and Compounds, Vol. 492, pp. 521-524 (2010).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3798-
dc.description.abstract印刷電路板(printed circuit board, PCB)是由絕緣材料與導體所組成,依據結構、製程、材質、外觀、物理特性、應用等可以分成多種種類。印刷電路板的主要功能為電器連接及承載元件,故其需具備耐熱、剛強度、低電阻等等特性。隨著電子產品的迅速進步,設計變更以及零件更新都需要重新訂製所需的電路板。相對的,將會有大量的電子產品遭到淘汰,這些淘汰掉的電路板將會對環境造成一定量的破壞。由於電路板上層的金屬價格貴重,通常會以特定蝕刻液回收貴金屬,並還原再利用。而下層的高分子基板由於價格低廉,一般都是送至回收場銷毀並無太大的利用價值。本研究中使用三種不同方式的觸媒,並搭配化學氣相沉積法以即熱裂解法合成奈米碳材,提供一電路板回收再利用之綠色技術。 在熱裂解合成奈米碳材的方法中,利用氯化鎳水溶液作為觸媒前驅物,可以順利的在800-1000℃間合成奈米碳材,在800℃合成出管狀奈米碳管以及片狀的奈米碳纖維,900℃時合成類似鯡魚骨狀的奈米碳纖維、奈米碳球以及鯡魚骨狀的奈米碳纖維,1000℃時則可合成出石墨層為兩種結構的奈米碳管以及片狀的奈米碳纖維,並且可發現ID/IG隨著溫度的升高而下降。 在使用NiMg合金合成奈米碳材時,可發現在低溫的合成條件時,所得到的產物大部份是以無定形的碳為主以及非晶型的奈米碳纖維,當溫度超過750℃之後可發現開始有竹節狀及管狀的奈米碳管生成,並探討流速、碳源量、含氫比的影響,進而尋找碳管生成的最佳條件。另外,利用電木板、酚醛樹酯、廢棄的電路板合成奈米碳管,可發現不同種類的碳源會導致所生成的產物、純度、產量有極大的影響,使用酚醛樹酯時,由於無添加任何不純的成份在其中,可得到純度極純、結晶性佳、直徑分佈均勻的奈米碳管。 使用沸石擔載不同觸媒並以電木板作為碳源合成奈米碳管時,由於擔載在沸石表面的觸媒顆粒較小,使得所合成出的奈米碳纖維與奈米碳管的尺度也較小,在Ni與NiMg觸媒時可得到大部份由碳纖維所組成的產物,利用Co觸媒則可以在1000℃的高溫底下合成奈米碳管,而使用Fe觸媒則可在800-1000℃之間得到非常筆直的奈米碳管與奈米碳纖維。zh_TW
dc.description.abstractA bilayer copper (Cu)/polymer laminate is the prototype of printed circuit board (PCB). Owing to possess the characteristics of low cost and easy fabrication, PCBs have been widely manufactured and used in a variety of electronic products. But the lifetime of consumer electronic products is usually very short. They become out-of-date very quickly and then are abandoned. Unfortunately, this produces large amounts of waste electronic products including PCBs which might have detrimental effects on the environment. To reduce the detrimental effects, some metallic components, such as Cu used in conductive traces on PCBs, are recycled and reused. Polymer materials, such as the insulating substrates of PCBs, are also widely used in consumer electronic products. However, the recycling of polymer materials is not currently put into practice. Therefore, development of a suitable recycling technique for the polymer component is urgent. This study demonstrates that the polymer component might be a good carbon source for the synthesis of carbon nanomaterials. Different kinds of catalysts were used to synthesize valuable carbon nanomaterials from the commercial paper phenolic (PP) board. First of all, we used NiCl2(aq) as the catalyst precursor and PP board as the carbon source. Carbon nanomaterials were produced by pyrolyzing PP board and NiCl2¬ at temperatures 800, 900 and 1000℃, respectively, under N2 atmosphere. The tubular and platelet-like nanofibers were synthesized at 800℃, while the herringbone-like nanofibers and carbon nanospheres were found at 900℃. Other than the above, we synthesized two different nanofibers, one is platelet-like and the other is with two graphite staked tubewalls at 1000℃. With increase the temperature, the graphitization degree gets better. Second, the nano-Ni/Mg alloy has been used to grow carbon nanomaterials under various reaction conditions such as reaction temperature, gas flow rate, hydrogen addition, amount of PP board, and carbon source, in order to obtain the optimum growth condition. We could get highest yield and well graphite at 750℃, 100sccm, 100% hydrogen with 10g PP board. Finally, we used zeolite-supported catalysts (such as Ni, Co, Fe, Ni/Mg, and Cu) to synthesize carbon nanomaterials in order to observe the influence of the catalyst size. The CNTs and CNFs were synthesized at 800℃ using nickel as the catalyst, while the CNFs were found at all the temperatures with Ni-Mg. When we used Co as the catalyst, we just could get few carbon nanotubes at 1000℃. Fe as catalyst can synthesize straight CNTs, CNFs, and bamboo-like carbon nanotube between 800℃ and 1000℃.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract III 目錄 V 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章 文獻回顧 3 2.1奈米碳材的起源 3 2.2奈米碳材的結構及成長機制 5 2.2.1奈米碳球 5 2.2.2奈米碳纖維 8 2.2.3奈米碳管 12 2.2.4奈米碳膜與奈米碳花 17 2.3合成奈米碳材的方法 20 2.3.1電弧放電法 20 2.3.2雷射蒸發法 21 2.3.3化學氣相沉積法 22 2.3.4其他合成方法 25 2.4酚醛樹酯合成奈米碳材 26 2.5裂解法合成奈米碳管 29 2.7沸石擔載觸媒 31 第三章 實驗方法 36 3.1以裂解法合成奈米碳材 36 3.2以氣相沉積法合成奈米碳材 37 3.2.1 Ni/Mg合金觸媒 37 3.2.2沸石擔載金屬觸媒 39 3.3穿透式電子顯微鏡樣品製備及分析 42 3.4粉末X光繞射(X-ray powder diffraction, XRD)分析 42 3.5掃瞄式電子顯微鏡樣品製備 43 3.6熱重分析(Thermogravimetric analysis, TGA) 43 3.7拉曼分析 43 3.8碳產量的計算 44 第四章 結果與討論 45 4.1電木板熱性分析 45 4.2使用裂解法合成奈米碳材 46 4.3 Ni/Mg 合金合成奈米碳材 54 4.3.1不同溫度下合成奈米碳材 54 4.3.2不同氮氫流率合成奈米碳材 67 4.3.3不同氣體流速合成奈米碳材 78 4.3.4不同碳量合成奈米碳材 83 4.3.5不同碳源合成奈米碳材 89 4.4沸石擔載金屬觸媒合成奈米碳材 96 4.4.1沸石擔載鎳合成奈米碳材 96 4.4.2沸石擔載鎳在不同氮氫比下合成奈米碳材 106 4.4.3沸石擔載鎳鎂觸媒合成奈米碳材 113 4.4.4沸石擔載鈷觸媒合成奈米碳材 119 4.4.5沸石擔載鐵觸媒合成奈米碳材 124 4.5以沸石擔載不同觸媒之討論 131 第五章 結論 133 第六章 參考文獻 134zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607201017365400en_US
dc.subjectCarbon nanomaterialsen_US
dc.subject奈米碳材zh_TW
dc.subjectPrinted circuit boarden_US
dc.subjectRecycleen_US
dc.subjectGreen technologyen_US
dc.subject印刷電路板zh_TW
dc.subject酚醛樹酯zh_TW
dc.title以商用紙質電木板作為碳源利用裂解法及化學氣相沉積法合成奈米碳材zh_TW
dc.titleUtilizing the commercial paper phenolic board to synthesize carbon nanomaterials by thermal pyrolysis and chemical vapor depositionen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.