Please use this identifier to cite or link to this item:
標題: 製備主客型黏土/二氧化矽奈米混成材料及其聚苯乙烯奈米複合材料與物性分析
Preparation and Physical Properties of Host/Guest Montmorillonite Clay/Silica Nanohybrids and Their Polystyrene Nanocomposites
作者: 曾子凡
Tseng, Tzu-Fan
關鍵字: Clay
出版社: 化學工程學系所
引用: 1. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. Ultrastrong and stiff layered polymer nanocomposites. Science 2007;318:80-3. 2. Bonderer LJ, Studart AR, Gauckler LJ. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008;319:1069-73. 3. Schmidt DF, Clement F, Giannelis EP. On the origins of silicate dispersion in polysiloxane/layered-silicate nanocomposites. Adv Funct Mater 2006;16:471-5. 4. Haraguchi K, Ebato M, Takehisa T. Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 2006;18:2250-4. 5. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 2001;28:1-63. 6. Theng BKG. The chemistry of clay-organic reactions. John Wiley & Sons: New York, Toronto 1974, pp. 9-13. 7. Lagaly G, Ziesmer S. Colloid chemistry of clay munerals: the coagulation of montmorillonite dispersions. Adv Colloid Interface sci 2003;100-102:105-28. 8. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Mechanical properties of nylon 6-clay hybrid. J Mater Res 1993;8:1185-9. 9. Weimer MW, Chen H, Giannelis EP, Sogah DY. Direct synthesis of dispersed nanocomposites by in situ living free radical polymerization using a silicate-anchored initiator. J Am Chem Soc 1999;121:1615-6. 10. Fu X, Qutubuddin S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 2004;42:807-13. 11. Fan X, Xia C, Advincula RC. On the formation of narrowly polydispersed PMMA by surface initiated polymerization (SIP) from AIBN-coated/intercalated clay nanoparticle platelets. Langmuir 2005;21:2537-44. 12. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA. Fire properties of polystyrene-clay nanocomposites. Chem Mater 2001;13:3774-80. 13. Tseng CR, Wu JY, Lee HY, Chang FC. Preparation and characterization of polystyrene-clay nanocomposites by free-radical polymerization. J Appl Polym Sci 2002;85:1370-7. 14. Vyazovkin S, Dranca I, Fan X, Advincula R. Degradation and relaxation kinetics of polystyrene-clay nanocomposites prepared by surface initiated polymerization. J Phys Chem B 2004;108:11672-9. 15. Samakande A, Hartmann PC, Cloete V, Sanderson RD. Use of acrylic based surfmers for the preparation of exfoliated polystyrene-clay nanocomposites. Polymer 2007;48:1490-9. 16. Hyun YH, Lim ST, Choi HY, Jhon MS. Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 2001;34:8084-93. 17. Krikorian V, Pochan DJ. Poly(L-Lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chem Mater 2003;15:4317-24. 18. Wu JY, Wu TM, Chen WY, Tsai SJ, Kuo WF, Chang GY. Preparation and characterization of PP/clay nanocomposites based on modified polypropylene and clay. J Poly Sci Part B Polym Phys 2005;43:3242-54. 19. Sepehr M, Utracki LA, Zheng X, Wilkie CA. Polystyrenes with macro-intercalated organoclay. Part Ⅰ. Compounding and characterization. Polymer 2005;46:11557-68. 20. Xu L, Nakajima H, Manias E, Krishnamoorti R. Tailored nanocomposites of polypropylene with layered silicates. Marcomolecules 2009;42:3795-803. 21. Hasegawa N, Okamoto H, Kato M, Usuji A, Sato N. Nylon6/Na-montmorillonite nanocomposites prepared by compounding nylon 6 with Na-montmorillonite slurry. Polymer 2003;44:2933-7. 22. Ahn YC, Paul DR. Rubber toughening of nylon 6 nanocomposites. Polymer 2006;47:2830-8. 23. Chan IC. Preparation of clay/polystyrene nanocomposites by surface polymerization and their physical properties. Master Thesis, University of Chung-Hsing, Department of Material Science and Engineering, 1999. 24. Bhiwankar NN, Weiss RA. Melt intercalation/exfoliation of polystyrene sodium montmorillonite nanocomposites using sulfonated polystyrene ionomer cpmpatibilizers. Polymer 2006;47:6684-91. 25. Yei DR, Kuo SW, Su YC, Chang FC. Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonite. Polymer 2004;45:2633-40. 26. Bourgeat-Lami E, Herrera NN, Putaux JL, Reculusa S, Perro A, Ravaine S, Mingotaund C, Duguet E. Surface assisted nucleation and growth of polymer layexes on organically-modified inorganic particles. Macromol Symp 2005;29:32-46. 27. Yei DR, Fu HK, Chang YH, Kuo SW, Huang JM, Chang FC. Thermal properties of polystyrene nanocomposites formed from rigid intercalation agent-treated montmorillonite. J Polym Sci Part B Polym Phys 2007;45:1781-7. 28. Fu HK, Huang CF, Huang JM, Chang FC. Studies on thermal properties of PS nanocomposites for the effect of intercalated agent with side groups. Polymer 2008;49;1305-11. 29. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. Advances in biominmtic and nanostrcutured biohybrid materials. Adv Mater 2009;21:1-14. 30. Ji YQ, Black L, Weidler PG, Janek M. Preparation of nanostructured materials by heterocoagulation-intercalation of montmorillonite with synthetic hematite particles. Langmuir 2004;20:9796-806. 31. Zhang R, Hummelgrad M, Olin H. Simple synthesis of clay-gold nanocomposites with tunable color. Langmuir 2010;26:5823-8.. 32. Hur SG, Kim TW, Hwang SJ, Hwang SH, Yang JH, Choy JH. Heterostrcutured nanohyrbid of zinc oxide-montmorillonite clay. J Phys Chem B 2006;110:1599-604. 33. Belova V, Andreeva DV, Mohwald H, Shchukin DG. Ultrasonic intercalation of gold nanoparticles into clay matrix in the presence of surface-active materials. Part Ⅰ: neutral polyethylene glycol. J Phys Chem C 2009;113:5381-9. 34. Belova V, Mohwald H, Shchukin DG. Ultrasonic intercalation of gold nanoparticles into a clay matrix in the presence of surface-active materials. Part Ⅱ: negative sodium dodecylsulfate and positive cetyltrimethylammonium bromide. J Phys Chem C 2009;113:6751-60. 35. Galaneau A, Barodawalla A, Pinnavaia TJ. Porous clay heterostrcutures formed by gallery-templated synthesis. Nature 1995;374:529-31. 36. Letaief S, Martin-Luengo MA, Aranda P, Ruiz-Hitzky E. A colloidal route for delamination of layered solids: novel porous-clay nanocomposites. Adv Funct Mater 2006;16:401-9. 37. Bi W, Song R, Meng X, Jiang Z, Li S, Yang T. In situ synthesis of silica gel nanowire/Na+-montmorillonite nanocomposites by the sol-gel route. Nanotechnology 2007;18:115620. 38. Ohtsuka K. Preparation and properties of two-dimensional microporous pillared interlayered solids. Chem Mater 1997;9:2039-50. 39. Han YS, Matsumoto H, Yamanaka S. Preparation of new silica sol-based pillared clays with high surface area and high thermal stability. Chem Mater 1997;9:2013-8. 40. Liu ZH, Ooi K, Kanoh H, Tang W, Yang X, Tomida T. Synthesis of thermal stable silica-pillared layered manganses oxide by an intercalation/solveothermal reaction. Chem Mater 2001;13:473-8. 41. Wei L, Tang T, Huang B. Synthesis and characterization of polyethylene/clay-silica nanocomposites: a montmorillonite/silica hybrid supported catalyst and in situ polymerization. J Polym Sci Part A Polym Chem 2004;42:941-9. 42. Konishi Y, Cakmak M. Structural hierarchy developed in injection molding of nylon 6/clay/carbon black nanocomposites. Polymer 2005;46:4811-26. 43. Kehlbeck JD, Hagerman ME, Cohen BD, Eliseo J, Fox M, Joek W, Karlin D, Leibner E, Nagle E, Nolan M, Schaefer I, Toney A, Topka M, Uluski R, Eood C. Directed self-assembly in laponite/CdSe/polyaniline nanocomposites. Langmuir 2008;24:9727-38. 44. Zhang W, Li MKS, Yue PL, Gao P. Exfoliated Pt-clay/Nafion nanocomposite membrane for self-humidifying polymer electrolyte fuel cells. Langmuir 2008;24:2663-70. 45. Meng X, Wang H, Qian Z, Gao X, Yi Q, Zhang S, Yang M. Preparation of photodegradable polypropylene/clay composites based on nanoscaled TiO2 immobilized organoclay. Polym Compos 2009;30:543-9. 46. Wang Z, Meng X, Li J, Du X, Li S, Jiang Z, Tang T. A simple method for preparing nanotubes/clay hybrids in water. J Phys Chem C 2009;113:8058-64. 47. Nemeth J, Rodriguez-Gattorno G, Diaz D, Vazquez-Olmos AR, Dekany, I. Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium. Langmuir 2004;20:2855-60. 48. Mogyorosi K, Dekany I, Fendler JH. Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles. Langmuir 2003;19:2938-46. 49. Zhu HY, Orthman JA, Li JY, Zhao JC, Churchman GJ, Vansant FF. Novel composites of TiO2 (anatase) and silicate nanoparticles. Chem Mater 2002;14:5037-44. 50. Ooka C, Akita S, Ohashi Y, Horiuchi T, Suzuki K, Komai S, Yoahida H, Hattori T. Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity. J Mater Chem 1999;9:2943-52. 51. Kiraly Z, Veisz B, Mastalir A, Kofarago Gy. Preparation of ultra fine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: catalytic probes in hydrogenations. Langmuir 2001;17:5381-7. 52. Han Z, Zhu H, Bulcock SR, Ringer SP. One-step synthesis and structural features of CdS/montmorillonite nanocomposites. J Phys Chem B 2005;109:2673-8. 53. Hata H, Kubo S, Kobayashi Y, Mallouk TE. Intercalation of well-dispersed gold nanoparticles into layered oxide nanosheets through intercalation of a polyamine. J Am Chem Soc 2007;129:3064-5. 54. Bourlibos AB, Karakassides MA, Simopoulos A, Petridis D. Synthesis and characterization of magnetically modified clay composites. Chem Mater 2000;12:2640-5. 55. Tombacz E, Csanaky C, Illes E. Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence. Colloid Polym Sci 2001;279:484-92. 56. Umemura Y. Hybrid films of a clay mineral and an Iron (II) complex cation prepared by a combined method of the Langmuir−Blodgett and self-assembly techniques. J Phys Chem B 2002;106:11168-71. 57. Jerez J, Flury M, Shang J, Deng Y. Coating of silica sand with aluminosilicate clay. J Colloid Interface Sci 2006;294:155-64. 58. Ariga K, Lvov Y, Ichinose I, Kunitake T. Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Appl Clay Sci 1999;15:137-52. 59. Cezar N, Xiao H. Novel retention system based on (2,3-epoxypropyl)trimethyl ammonium chloride modified silica nanoparticles and anionic polymer. Ind Eng Chem Res 2005;44:539-45. 60. Theng BKG. The chemistry of clay-organic reactions. John Wiley ﹠Sons, New York, Toronto 1974, pp. 1-28. 61. van Olphen H. An introduction to clay colloid chemistry. John Wiley ﹠Sons, New York, London 1963, pp. 59-82. 62. Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 2003;28:1539-41. 63. Utracki LA, Sepehr M, Boccaleri E. Synthetic, layered nanoparticles for polymeric nanocomposites (PCNs). Polym Adv Technol 2007;18:1-37. 64. Yilmaz N, Yapar S. Adsorption properties of tetradecyl- and hexadecyltrimethyl ammonium bentonites. Appl Clay Sci 2004;27:223-8. 65. Starodoubtsev SG, Lavrentyeca EK, Khokhlov AR, Allegra G, Famulari A, Meille SV. A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces. Langmuir 2006;25:369-74. 66. Bujdak J, Lyi N. Spectral and structural characteristics of oxazine 4/hexadecyl trimethyl ammonium montmorillonite films. Chem Mater 2006;18:2618-24. 67. Heinz H, Krishnamoorti RA, Fatmer BL. Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chem Mater 2007;19:59-68. 68. Theng BAG. The chemistry of clay-organic reactions. John Wiley ﹠Sons: New York, Toronto 1974, pp. 84-127. 69. Xiao H, Cezar N. Organo-modified cationic silica nanoparticles/anionic polymer as flocculants. J Colloid Interface Sci 2003;67:343-51. 70. Chiang CH, Ishida H, Koenig JL. The structure of γ-aminopropyltriethoxy silane on glass surfaces. J Colloid Interface Sci 1980;74:396-404. 71. Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy, 3rd ed., Thomson Learning, Inc.: Brooks/Cole 2001, pp. 29-30. 72. Young SK, Jarrett WL, Mauritz KA. Nafion®/ORMOSIL nanocomposites via polymer in-situ sol-gel reactions. 1. Probe of ORMOSIL phase nanostructures by 29Si solid-state NMR spectroscopy. Polymer 2002;43:2311-20. 73. Fasce DP, dell'Erba IE, Williams RJJ. Synthesis of a soluble functionalized-silica by the hydrolysis and condensation of organotrialkoxysilanes bearing (β-hydroxy) tertiary amine groups with tetraethoxysilane. Polymer 2005;46:6649-56. 74. Lee LT, Leite CAP, Galembeck F. Controlled nanoparticle assembly by dewetting of charged polymer solutions. Langmuir 2004;20: 4430-35. 75. Hamley IW, Castelletto V. Small-angle scattering of block copolymers: in the melt, solution and crystal states. Prog Poly Sci 2004;29:909-48. 76. Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed., Prentice Hall, Upper Saddle River, New Jersey 2001, pp. 93-6. 77. van Olphen H. An introduction to clay colloid chemistry. John Wiley ﹠Sons, New York, London 1963, pp. 80-1. 78. Chem SL, Dong P, Yang GH, Yang JJ. Characteristic aspects of formation of new particles during the growth of monosize silica seeds. J Colloid Interface Sci 1996;180:237-41. 79. Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging - a review. Packag Technol Sci 2003;16:149-58. 80. Nazarenko S, Mensghetti P, Julmon P, Olson BG, Qutubuddin S. Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym Sci Part B: Poly Phys 2007;45:1733-53. 81. Guo Z, Lee LJ, Tomako DL. CO2 permeability of polystyrene nanocomposites and nanocomposite foams. Ind Eng Chem Res 2008;47:9636-43. 82. Gillman JW, Jackson CL, Morgan AB, Harris JR. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 2000;12:1866-73. 83. Greesh N, Hartmann PC, Sanderson RD. Preparation of polystyrene/clay nanocomposites by free-radical polymerization in dispersion. Maromol Mater Eng 2009;294:787-94. 84. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene−clay systems. J Phys Chem B 2007;111:12685-92. 85. Morgan AB, Harris JD. Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication. Polymer 2004;45:8695-703. 86. Li Y, Ishida H. A study of morphology and intercalation kinetics of polystyrene−organoclay manocomposites. Marcomolecules 2005;38:6513-9. 87. Frankowski DJ, Capracotta MD, Martin JD, Khan SA, Spontak RJ. Stability of organically modified montmorillonites and their polystyrene nanocomposites after prolonged thermal treatment. Chem Mater 2007;19:2757-67. 88. Patakfalvi R, Dekany I. Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes. Appl Clay Sci 2004;25:149-59. 89. Hata H, Kabayashi Y, Salama M, Malek R, Mallouk TE. pH-Dependent intercalation of gold nanoparticles into a synthetic fluoromica modified with poly(allylamine). Chem Mater 2007;9:6588-96. 90. Tseng TF, Wu JY. Preparation and structural characterization of novel nanohybrids by cationic 3D silica nanoparticles sandwiched between 2D anionic montmorillonite clay through electrostatic attraction. J Phys Chem C 2009;113:13036-44. 91. Li F, Rosen MJ. Adsorption of gemini and conventional cationic surfactants onto montmorillonite and the removal of some pollutants by the clay. J Colloid Interface Sci 2000;224:265-71. 92. Chien CF. The study of interfacial modification on physical properties of polystyrene/montmorillonite nanocomposites. Master Thesis, University of Chung-Hsin, Department of Chemical Engineering, 2000. 93. Theng BKG. The chemistry of clay-organic reactions. John Wiley & Sons, New York, Toronto 1974, pp. 219-30. 94. Luckham PF, Rossi S. The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interface Sci 1999;82:43-92. 95. Zeng Z, Yu J, Guo ZX. Preparation of epoxy-functionalized polystyrene/silica core-shell composite nanoparticles. J Polym Sci Part A Polym Chem 2004;42:2253-62. 96. Choi SH, Hwang YM, Ryoo JJ, Lee KP, Ohta K, Takeuchi T, Jin JY, Fujimoto C. Surface grafting of glycidyl methacrylate on silica gel and polyethylene beads. Electrophoresis 2003;24:3181-6. 97. Suckeveriene RY, Tzur A, Narkis M, Siegmann A. Grafting of polystyrene chains on surface of nanosilica via peroxide bulk polymerization. Polym Compos 2009;30:422-8. 98. Berta M, Lindsay C, Pans G, Camino G. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym Degrad Stabil 2006;91:1179-91. 99. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer 2008;49:3187-204. 100. Utacki LA, Sepehr M, Boccaleri E. Synthetic, layered nanocomposites for polymeric nanocomposites (PNCs). Polym Adv Technol 2007;18:1-37. 101. Herrera NN, Letoffe JM, Putaux JL, David L, Bourgeat-Lami E. Aqueous dispersions of silane-functional laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 2004;20:1564-71. 102. He H, Duchet J, Galy J, Gerard JF. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J Colloid Interface Sci 2005;288:171-6. 103. Wheeler PA, Wang J, Baker J, Mathias L. Synthesis and characterization of covalently functionalized laponite clay. Chem Mater 2005;7:3012-8. 104. Wang K, Wand L, Wu J, Chen L, He C. Preparation of highly exfoliatied epoxy/clay nanocomposites by ”slurry compounding”: Process and Mechanisms. Langmuir 2005;21:3613-8. 105. Voorn DJ, Ming W, van Herk AM, Bomans PHH, Freaerik PM, Gasemjit P, Johanssmann D. Controlled heterocoagulation of platelets and spheres. Langmuir 2005;21:6950-6. 106. Khvan S, Kim J, Lee SS. Mechanistic examination of pre-exfoliating confinement of structure-active polystyrene nanobeads within pristine clay. J Colloid Interface Sci 2007;306:22-7. 107. Chen P, Zhang L. Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomolecules 2006;7:1700-6. 108. Mousty C. Sensors and biosensors based on clay-modified electrodes -new trends. Appl Clay Sci 2004;24:159-77. 109. Nethravathi C, Rajamathi JT, Ravishankar N, Shivakumara C, Rajamathi M. Graphite oxide-intercalated anionic clay and its decomposition to grapheme-inorganic material nanocomposites. Langmuir 2008;24:8240-4. 110. Xuzhuang Y, Yang D, Hauiyong Z, Jiangwen L, Martins WN, Frost R, Daniel L, Yuenian S. Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis. J Phy Chem C 2009;113:8243-8. 111. Wei L, Tang T, Huang B. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. Microporous Mesoporous Mater 2004;67:175-9. 112. Nakatsuji M, Ishii R, Wang ZM, Ooi K. Preparation of porous clay minerals with organic-inorganic hybrid pillars using solvent-extraction route. J Colloid Interface Sci 2004;272:158-66. 113. Tseng TF, Wu JY. Adsorbed functional silica nanoparticles as a spacer in clay gallery for the preparation of highly dispersed polystyrene clay nanocomposites by bulk polymerization in the presence of glycidylmethacrylate. Submitted. 114. Lee KP, Kang HJ, Joo DL, Choi SH. Adsorption behavior of urokinase by polypropylene film with amine, hydroxylamine and polyol groups. Radiat Phys Chem 2001;60:473-82. 115. Mori H, Lanzendorfer MG, Muller AHE. Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxylsilane containing hydroxyl groups. Marcomolecules 2004;37:5228-38. 116. Chou CC, Shieu FS, Lin JJ. Preparation, organophilicity, and self-assembly of poly(oxypropylene)amine-clay hybrids. Maromolecules 2003;36:2187-9. 117. van Olphen H. An introduction to clay colloid chemistry. John Wiley & Sons, New York, London 1963, p. 245. 118. Brinjer CJ, Prakash SS. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films. US Patent, 5948482, 1999. 119. Johnsen BB, Olafsen K, Stori A. Reflection-adsorption FT-IR studies of the specific interaction of amines and an epoxy adhesive with GPS treated aluminum surfaces. Int J Adhe Adhe 2003;23:155-63. 120. Yeskie MA, Harwell JH. On the structure of aggregates of adsorbed surfactants: the surface charge density at the hemimicelle/admicelle transition. J Phys Chem 1998;92:2346-52. 121. Xu S, Boyd SA. Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir 1995;11:2508-14. 122. Sanchez-Martin MJ, Dorado MC. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. J Hazard Mater 2008;150:115-23. 123. Zhu J, Zhu R, Xu L, Ruan X. Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids. Colloids Surf A 2007;304:41-8. 124. Sing KSW, Everett DH, Haul RAW, Moscou L, Pieroytti RA, Rouquerol J Siemieniewska T. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure Appl Chem 1985;57:603-19. 125. Arora A, Padua GW. Review: nanocomposites in food packaging. J Food Sci 2010;75:43-9. 126. Nielsen LE. Models for the permeability of filled polymer system. J Macromol Sci Part A Pure Appl Chem 1967;1:929-42. 127. Lu YL, Li Z, Yu ZZ, Tian M, Zhang LQ, Mai YW. Microstructure and properties of highly filled rubber/clay nanocomposites prepared by melt blending. Compos Sci Technol 2007;67:2903-13. 128. Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ. Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studies by positrons. Polymer 2005;46:719-24.
摘要: 在本研究中,使用兩種新穎的方法來改質奈米黏土,進而製備聚苯乙烯/黏土/二氧化矽奈米複合材料。這兩種方法為摻混(Hybrid)法及原位形成(In-Situ Formation)法。摻混法是將二氧化矽膠體粒子與黏土在水溶液中進行異相凝集,使得二氧化矽粒子插入黏土層間,形成黏土/二氧化矽奈米混成物(nanohybrids);原位形成法是使二氧化矽原位生長在黏土表面,製備單片結構之黏土/二氧化矽模板(platelets)。此兩種改質黏土裡,二氧化矽為客(Guest)而黏土是主(Host),是為黏土/二氧化矽混成材料。製備之改質黏土再經過表面有機化後,以塊狀聚合法製備聚苯乙烯/黏土/二氧化矽奈米複合材料。在第一章中,將聚苯乙烯/黏土奈米複合材料作文獻回顧,並回顧高分子與奈米混成物之複合材料之文獻。第二章敘述奈米混成物之製備與分析。將帶正電的胺基矽氧烷改質之二氧化矽粒子與帶負電的層狀黏土以自我排列(self-assembly)的方式形成黏土/二氧化矽奈米混成物。在TEM及FESEM圖中,直徑22 nm的二氧化矽均勻地吸附在黏土表面或是黏土層間,出現超膠體(supracolloidal)分子構造,且小角度X光繞射數據中亦佐證二氧化矽在奈米混成物中之長距離規則排列。在BET結果討論中,推測此奈米混成物之構造同時具有偏位(biased)排列與均勻(uniform)排列的結構。在第三章中,製備及分析由此黏土/二氧化矽奈米混成物所製作的聚苯乙烯奈米複合材料。將此奈米混成物吸附陽離子界面活性劑,然而部分二氧化矽將因此而脫附於黏土表面;在聚合時,加入共單體甲基丙烯酸環氧丙酯(GMA)反應架橋於聚苯乙烯鏈上及二氧化矽上。在複材之斷裂面型態分析中,聚苯乙烯與黏土及二氧化矽之界面皆有良好的黏著性。含有2 phr的黏土、4 phr的二氧化矽及0.2 wt %的GMA之奈米複合材料,30 ℃下之儲存模數增加31 %,玻璃轉移溫度則沒有變化。此成分之奈米複合材料具有良好的尺寸穩定性,其熱膨脹係數降低78 %;且此奈米複合材料之水蒸氣阻氣性亦下降24 %。 第四章敘述黏土/二氧化矽模板之製備與分析,並製備具有高阻氣性的聚苯乙烯奈米複合材料。一個由環氧基矽烷偶合劑及有機胺合成的矽烷衍生物(SD),吸附在黏土表面後,再加入已水解之四乙基矽,使得二氧化矽合成於黏土表面,並且再利用三甲基氯矽烷接支於二氧化矽表面增進親油特性,製備成黏土/二氧化矽模板。在TEM及FESEM圖片中,觀察到直徑為7-11 nm的二氧化矽球型粒子在黏土/二氧化矽模板上;在固態29Si NMR中有Q3及Q4的無機矽的訊號;及ζ電位分析中出現二氧化矽的表面電位;在EDS分析中,Si/Al的元素比例隨已水解TEOS之添加而增加;在BET分析中,此黏土/二氧化矽模板為非孔洞材。在XRD及TEM分析此複合材料為均勻分散之脫層型奈米複合材料,此模板為單片分散在聚苯乙烯基材中,其平均黏土層間距離為221 nm。在氧氣透過率分析中,加入0.75 vol. %(1.5 wt %)的黏土/二氧化矽模板,可降低55 %;再由Nielson氣體透過方程式(Nielson tortuous path model)求得黏土/二氧化矽模板在聚苯乙烯基材中之長徑比為241-292,為分散性良好之聚苯乙烯/黏土/二氧化矽奈米複合材料。第五章說明此論文之結論以及對未來研究方向的建議。我們以摻混法及原位形成法所製備之改質黏土,可以有效地將黏土均勻分散在聚苯乙烯奈米複合材料中。
Two novel methods, the Hybrid method and the In-Situ Formation method, were used to modify montmorillonite clay in order to prepare exfoliated polystyrene/clay/silica nanocomposites by the free-radical polymerization in bulk. The Hybrid method adopts the aminosilane-modified colloidal silica (APS-Silica) as a spacer inserted into the montmorillonite clay galleries to form ordered APS-Silica/Clay nanohybrids. The In-Situ Formation method is the in-situ formation of SiO2 on the swollen clay to yield delaminated Clay-SiO2 platelets. In these two methods, the silica is the guest mounting on the host clay to prepare the host/guest clay/silica nanohybrids. In Chapter One, the PS/clay nanocomposites are reviewed by literature. The nanohybrids containing clay and inorganic particles are introduced as well as their polymer/nanohybrids nanocomposites also summarized by literature review. In Chapter Two, the self-assembly of cationic APS-Silica and anionic clay heterocoagulated by electrostatic attraction is revealed and characterized. The supracolloidal architecture of APS-Silica/Clay nanohybrids were investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and confirmed by small-angle X-ray scattering. A proposed hybrid structure of APS-Silica/Clay is assigned to both the uniform packing and the biased packing based on Brunauer-Emmett-Teller surface area measurement and analysis. In Chapter Three, the APS-Silica/Clay nanohybrids were adsorbed with cationic dimethyldistearylammonium chloride to render their surface hydrophobic with a concomitant desorption of APS-Silica from clay surface. Comonomer glycidylmethacrylate (GMA) was introduced for the preparation of PS/clay/silica nanocomposites by in-situ grafting on APS-Silica/Clay nanohybrids to bridge the styrene monomer and inorganic aminosilane-grafted silica nanoparticles. Exfoliated nanocomposites were investigated by wide-angle X-ray scattering (WAXD) and TEM, from which a 22 nm diameter of APS-Silica nanoparticles were found to be mounted in the clay interlayers. The thermal properties and mechanical properties of nanocomposites are improved. The cryogenic fracture surfaces of PS nanocomposites exhibit good interfacial bonding among clay, APS-Silica and PS matrix. For PS/clay/silica nanocomposite containing 0.2 wt % of GMA and 2 phr of clay, the coefficient of thermal expansion is reduced by 78 % and the permeation of water vapor by 24 % compared with that of neat PS. Chapter Four studies the preparation and characterization of Clay-SiO2 platelets and their PS/clay/silica nanocomposites. The Clay-SiO2 platelets were prepared by modified clay, where the clay was absorbed with a silane derivative (SD) synthesized by 3-glycidylpropyltriethoxysilane and organoamine, followed by the polycondensation reaction with hydrolyzed tetraethyl orthosilicate. Trimethylchlorosilane was employed to organically modify Clay-SiO2 platelets. The isolated islands of SiO2 with a diameter of 7-11 nm grown on the clay surface were characterized by solid 29Si nuclear magnetic resonance (NMR), ζ potential and WAXD and also inspected by FESEM and TEM. Energy dispersive X-ray spectroscopy (EDS) shows the increased Si/Al atomic ratio with the increased input of hydrolyzed tetraethoxysilane. The non-porous structure of Clay-SiO2 platelets is also confirmed by BET. Highly dispersed Clay-SiO2 platelets were observed by TEM with an average interlayer distance of 221 nm obtained. Oxygen gas permeation of PS/clay/silica nanocomposites shows a 55 % reduction at a loading of 0.75 vol % (1.5 wt %) Clay-SiO2 platelets. As simulated by the Nielson tortuous path model, an aspect ratio between 241 and 292 for Clay-SiO2 platelets in the PS matrix is achieved. Chapter Five gives conclusions and future work suggested. The modification of clay via the Hybrid method and the In-Situ Formation method both demonstrate the plausible route to prepare a homogeneous dispersion of clay in PS matrix.
其他識別: U0005-1608201023195600
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.