Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3817
DC FieldValueLanguage
dc.contributor鄭如忠zh_TW
dc.contributorRu-Jong Jengen_US
dc.contributor陳幹男zh_TW
dc.contributor蔣見超zh_TW
dc.contributorKan-Nan Chenen_US
dc.contributor.advisor戴憲弘zh_TW
dc.contributor.advisorShenghong A. Daien_US
dc.contributor.author陳佑星zh_TW
dc.contributor.authorChen, You-Singen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T05:32:51Z-
dc.date.available2014-06-06T05:32:51Z-
dc.identifierU0005-1808201013002700zh_TW
dc.identifier.citation1. 艾爾.高爾 (Al Gore),不願面對的真相 (An Inconvenient Truth),商周出版,2007。 2. 張豐志,應用高分子手冊,五南圖書出版社,2003。 3. 賴耿陽,聚脲酯樹脂PU原理與實用,復漢出版社,2001。 4. D. Dieterich, “Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties,” Progress in Organic Coatings, Vol. 9, pp. 281–340(1981). 5. Young-Kuk Jhon, In-Woo Cheong and Jung-Hyun Kim, “Chain extension study of aqueous polyurethane dispersions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 179, pp. 71–78(2001). 6. Suk-Hye Son, Hae-Joon Lee and Jung-Hyun Kim, “Effects of carboxyl groups dissociation and dielectric constant on particle size of polyurethane dispersions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 133, pp. 295–301(1998). 7. Meng-Shung Yen, Hsiang-Chin Tsai and Po-Da Hong, “Effect of soft segment composition on the physical properties of nonionic aqueous polyurethane containing side chain PEGME,” Journal of Applied Polymer Science, Vol. 105, pp. 1391–1399(2007). 8. Yong Sil Kwak, Eun Young Kim, Byung Ha Yoo and Han Do Kim, “Preparation and properties of waterborne Poly(urethane urea)s for adhesives: The effects of the 2,2-bis(hydroxylmethyl)propionic acid content on the properties,” Journal of Applied Polymer Science, Vol. 94, pp. 1743–1751(2004). 9. Ajaya K. Nanda, Douglas A. Wicks, Samy A. Madbouly and Joshua U. Otaigbe, “Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method,” Journal of Applied Polymer Science, Vol. 98, pp. 2514–2520(2005). 10. Ajaya K. Nanda and Douglas A. Wicks, “The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process,” Polymer, Vol. 47, pp. 1805–1811(2006). 11. Xia Jiang, Jiehua Li, Mingming Ding, Hong Tan , Qiyao Ling, Yinping Zhong and Qiang Fu, “Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(e-caprolactone) and poly(ethylene glycol) as soft segment,” European Polymer Journal, Vol. 43, pp. 1838–1846(2007). 12. Eliane Ayres, Rodrigo L. Oréfice and M. Irene Yoshida, “Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions,” European Polymer Journal, Vol. 43, pp. 3510-3521(2007). 13. 張阿松,「ㄧ鍋化製備混合脂肪族-芳香族二異氰酸鹽之水性PU及物性提升之探討」,碩士論文,國立中興大學化學工程系(2007)。 14. Erwin T.H. Vink, Karl R. Rábago, David A. Glassner and Patrick R. Gruber, “Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production,” Polymer Degradation and Stability, Vol. 80, pp. 403–419(2003). 15. Rajeev Mehta, Vineet Kumar, Haripada Bhunia and S. N. Upadhyay, “Synthesis of poly(lactic acid): A review,” Journal of Macromolecular Science, Part C: Polymer Reviews, Vol. 45, pp. 325–349(2005). 16. Suong-Hyu Hyon, Khosrow Jamshidi and Yoshito Ikada, “Synthesis of polylactides with different molecular weights,” Biomateriols, Vol. 16, pp. 1503-1508(1997). 17. K. Jamshidi, S.-H. Hyon and Y. Ikada, “Thermal characterization of polylactides,” Polymer, Vol. 29, pp. 2229-2234(1988). 18. Israel Engleberg and Joachim Kohn, “Physico-mechanical properties of degradable polymers used in medical applications: a comparative study,” Biomaterials, Vol. 12, pp. 292–304(1991). 19. 化工資訊與商情之編輯室,「生質塑膠材料市場的現在與未來」,化工資訊與商情,第72期,第4-11頁(2007)。 20. 張敏、崔春娜、宋潔、邱建輝,「聚乳酸降解的影響因素和降解機理的分析」,包裝工程,第二十九卷,第八期,第16-19頁(2008)。 21. 馬曉豔、石淑先、夏宇正、焦書科、李效玉,「聚乳酸及其共聚物的製備和降解性能」,北京化工大學學報,第三十ㄧ卷,第一期,第51-56頁(2004)。 22. Minoru Nagata and Yuki Sato, “Photocurable biodegradable polyesters from poly(L-lactide) diols,” Polymer International, Vol. 54, pp. 386–391(2005). 23. Wenshou Wang, Peng Ping, Xuesi Chen and Xiabin Jing, “Polylactide-based polyurethane and its shape-memory behavior,” European Polymer Journal, Vol. 42, pp. 1240–1249(2006). 24. Wenshou Wang, Peng Ping, Xuesi Chen and Xiabin Jing, “Shape memory effect of poly(L-lactide)-based polyurethanes with different hard segments,” Polymer International, Vol. 56, pp. 840–846(2007). 25. 項尚林、方顯力、陳賢益、楊芳,「脂肪族聚酯基可生物降解水性聚氨酯的合成」,化工進展,第二十六卷,第八期,第1136-1139頁(2007)。 26. 項尚林、劉春梅、陳賢益,「可生物降解水性聚氨酯乳液的合成」,包裝工程,第二十八卷,第六期,第4-6頁(2007)。 27. Kevin Lewandowski, Larry R. Krepski, Daniel E. Michus, Ralph R. Roberts, Steven M. Heilmann, Wayne K. Larson, Mark D. Purgett, Steven D. Koecher, Stephen A. Johnson, Daniel J. Mcgurran, Chris J. Rreb, Sadanand V. Pathre and Khalid A. M. Thakur, “Synthesis and properties of waterborne self-crosslinkable sulfo-urethane silanol dispersions,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 40, pp. 3037–3045(2002). 28. Shan-hui Hsu, Wen-Ping Chu, Yu-Shuen Lin, Yu-Lin Chiang, David Chanhen Chen and Ching-Lin Tsai, “The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion,” Journal of Biotechnology, Vol. 111, pp. 143–154(2004). 29. Hung-Jen Yen, Shan-hui Hsu and Ching-Lin Tsai, “Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes,” Small, Vol. 5, No. 13, pp. 1553-1561(2009). 30. ASTM D 4274-05, “Standard test methods for testing polyurethane raw materials: Determination of hydroxyl numbers of polyols”. 31. G. Pezzin, F. Zilio-Grandi and P. Sanmartin, “The dependence of the glass transition temperature on molecular weight for polyvinylchloride,” European Polymer Journal, Vol. 6, pp. 1053-1061(1970). 32. Jiang Huang, Melissa S. Lisowski and James Runt, “Crystallization and microstructure of poly(L-lactide-co-meso-lactide) copolymers,” Macromolecules, Vol. 31, pp. 2593-2599(1998).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3817-
dc.description.abstract本研究主要探討如何透過化學合成方式,結合生質塑膠-聚乳酸(PLA)以及水性聚胺酯(WBPU)兩種綠色材料,製作出具有生物可降解性及生物相容性之特殊產物,可望在生醫材料上發揮功用。首先將聚乳酸的末端官能基皆改質為醇基(-OH)結構的中間體,實際上是以1,4-丁二醇(1,4-Butanediol)作為起始劑與L型乳酸交酯(L-Lactide)單體經過開環聚合(Ring-opening polymerization)後,獲得分子量約為2,100 g/mol之L型聚乳酸二元醇(PLLA diol)。 接著以預聚物法合成含有聚乳酸鏈段之水性聚胺酯(PLLA-WBPU),合成配方當中只改變軟鏈段之組成,設計PLLA diol含量為0、20、40、60、80、100 wt%,剩餘之軟鏈段皆由另一聚酯型二元醇(RS-956)取代,而其他之配方材料選用IPDI (Isophorone diisocyanate)、DMPA(Dimethylolpropionic acid)、TEA(Triethylamine)、EDA (Ethylene diamine)作為合成水性聚胺酯之單體,合成結果利用儀器與分析方法瞭解,此含有聚乳酸鏈段之水性聚胺酯的熱性質、機械性質、分子量、水解速度,並試驗其生物相容性之特性。 實驗結果顯示,軟鏈段當中聚乳酸含量在40~60 wt%時,為較佳的配方組成,具有良好的機械性質(24~34 MPa)以及伸長率(217~274 %),不會因含有聚乳酸而呈現過度剛硬而易脆的性質,且在水解測試當中,不會因為長時間浸泡後而再次乳化成乳液。最後經測試結果此材料具有良好之生物相容性,因此極有希望運用於特殊以及高單價之生醫材料當中。zh_TW
dc.description.abstractIn this study, we have combined the chemical processing of waterborne polymers and bio-mass intermediates in our design of new green materials. In our synthesis of waterborne polyurethane (WBPU) with PLA segments, PLA-diol of 2,100 molecular weight was synthesized from butanediol and dilactide through ring-opening trans-esterification, and was used as the key raw materials for modifying soft-segment portion of WBPUs. In the hydrolysis test, degradability of WBPUs is dependent on the PLA wt% content in the WBPU where higher rates of water hydrolysis are correlated with the higher PLA-diol concentration. Our screening of WBPUs indicated that the use of PLA-diol contents at 40~60% in the soft segment has resulted in the PU films with optimal mechanical performances. In addition, cell toxicity analysis showed that the PLA-WBPU (P-40J9) films exhibit no detectable toxicity to fibroblast cells (L929 Test) and macrophages (J774A1 Test). This green material shows a great potential for use in the special medical applications.en_US
dc.description.tableofcontents摘要……………………………..……………………………………………………...i Abstract……………………………………………………………………………….iii 目錄……………………………………………….…………………………………..iv 圖目錄…………………………………………….…………………………………..vi 表目錄…………………………………………….………………………………….vii 第一章 前言……………………………………………………………....…………1 第二章 文獻回顧………………………………………………………………....…3 2-1 簡介聚胺酯材料……………………………………………………..…...3 2-2 簡介水性聚胺酯…………………………………………………..……...4 2-2.1 水性聚胺酯研究歷史……………………………………..………..4 2-2.2 水性聚胺酯乳化方式…………………………………..…………..5 2-2.3 水性聚胺酯合成製程…………………………….………….……..6 2-2.4 預聚物法簡介…………………………….…………………….…..7 2-3 配方設計與反應條件對水性聚胺酯性能之影響…………………..…...8 2-3.1 多元異氰酸鹽單體的選用………………………………….……...8 2-3.2 多元醇單體的選用……………………………………….………...9 2-3.3 DMPA含量之影響………………………………………….……..10 2-3.4 軟鏈段與硬鏈段重量百分比(wt%)…………….………………...11 2-3.5 預聚物NCO/OH (Iso Index)之影響…………….………………..12 2-3.6 固體含量之影響……………………………………………….….12 2-3.7 水分散溫度………………………………………………….…….13 2-3.8 鏈延長劑添加量之影響………………………………………..…14 2-4 聚乳酸簡介…………………………………………………………..….15 2-4.1 聚乳酸合成方式…………………………………………….…….17 2-4.2 聚乳酸之基本性質……………………………………….……….19 2-4.3 聚乳酸之市場與運用…………………………………….……….19 2-4.4 聚乳酸降解的影響因素……………………………….………….20 2-4.5 聚乳酸之生命週期……………………………………….……….21 2-5 生物可降解聚胺酯……………………………………………..……….22 2-6 生物可降解水性聚胺酯………………………………………..……….24 2-7研究動機………………………………………………………..………..25 第三章 實驗藥品………………………………………………………...………...26 第四章 實驗儀器與分析方法…………………………………………...………...32 4-1 實驗儀器…………………………………………………………..….....32 4-2 分析方法…………………………………………………………..…….34 4-2.1水解測試...........................................................................................34 4-2.2滴定聚乳酸二元醇分子量...............................................................34 4-2.3 生物相容性測試..............................................................................35 4-2.3.1 細胞貼附測試步驟..............................................................36 4-2.3.2 免疫反應分析步驟..............................................................36 4-3 水性聚胺酯成模方式...............................................................................37 第五章 實驗方法………………………………………………………………......38 5-1 L型聚乳酸二元醇之合成方法…………………………….…..………..38 5-2水性聚胺酯合成方法……………….………………….……..……...….40 5-2.1 水性聚胺酯之配方設計…………………………………………..40 5-2.2水性聚胺酯合成步驟………………………………...……………42 5-3 水性聚胺酯放大製程至10 Kg之合成方法............................................44 5-3.1水性聚胺酯10 Kg製程之配方設計................................................44 5-3.2水性聚胺酯10 Kg製程之實驗步驟................................................45 第六章 結果與討論…………………………………………………………...…...47 6-1 L型聚乳酸二元醇分析結果.....................................................................47 6-1.1 L型聚乳酸二元醇分子量分析結果................................................47 6-1.2 L型聚乳酸二元醇熱性質分析結果................................................50 6-2水性聚胺酯實驗結果................................................................................53 6-2.1水性聚胺酯水溶液之性質與穩定性分析.......................................53 6-2.2水性聚胺酯薄膜之熱性質分析.......................................................55 6-2.3水性聚胺酯薄膜之分子量分析.......................................................60 6-2.4水性聚胺酯薄膜之成膜性質...........................................................63 6-2.5水性聚胺酯薄膜之機械性質...........................................................64 6-2.6水性聚胺酯薄膜之水解特性分析...................................................66 6-2.7水性聚胺酯薄膜之生物相容性分析...............................................70 6-2.8 水性聚胺酯放大至10 Kg製程.......................................................74 第七章 總結………………………………………………………………………..76 第八章 參考文獻…………………………………………………………………..78zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201013002700en_US
dc.subjectwaterborne PUen_US
dc.subject水性聚胺酯zh_TW
dc.subjectpoly(L-lactide) diolen_US
dc.subjectbiodegradable polymeren_US
dc.subjectbiocompatible polymeren_US
dc.subjectPLA-WBPUen_US
dc.subject聚乳酸二元醇zh_TW
dc.subject生物降解性zh_TW
dc.subject生物相容性zh_TW
dc.title兼具生物分解及生物相容性之聚乳酸-水性聚胺酯的合成zh_TW
dc.titleSynthesis of PLA-Waterborne Polyurethane (PU) Possessing Both Bio-degradable and Bio-compatible Characteristicsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.