Please use this identifier to cite or link to this item:
標題: 功能性硫醇分子在金(111)電極上的自組裝行為及對電鍍銅的影響
Self-Assembled Behavior of Functionalized Alkanethiols on Au(111) and Their Effects on Copper Electrodeposition
作者: 蘇敬文
Su, Jing-Wen
關鍵字: Self-assembled monolayer
cyclic voltammetry
underpotential deposition
overpotential deposition
出版社: 化學工程學系所
引用: 1. I. Langmuir, “The Constitution and Fundamental Properyies of Solids and Liquids. II. Liquids”, Journal of the American Chemical Society, 39, 1848 (1917). 2. K.B Blodgett,“Films Built by Depositing Successive Monomolecular Layers on a Solid Surface”, Journal of the American Chemical Society, 57, 1007 (1935). 3. W.C. Bigelow, D. L. Pickett, and W. A. Zisman,“Oleophobic Monolayers: I. Films Adsorbed from Solution in Non-Polar Liquids”, Journal of Colloid Science, 1, 513(1946). 4. A. Ulman,“Formation and Structure of Self-Assembles Monolayers”, Chemical Reviews, 96, 1533(1996). 5. R. G. Nuzzo, and D. L. Allara,“Adsorption of Bifunctional Organic Disulfides on Gold Surfaces”, Journal of the American Chemical Society, 105, 4481(1983). 6. 顏亞佩,“掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111) 及金(111)上之研究”,國立中央大學化學系碩士論文,民國92 年。 7. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chemical Reviews, 105, 1103(2005). 8. F. Schreiber,“Structure and Growth of Self-Assembling Monolayers”, Progress in Surface Science, 65, 151(2000). 9 . G. E. Poirier, “ Coverage-Dependent Phases and Phase Stability of Decanethiol on Au(111)”, Langmuir, 15, 1167(1999). 10 . L. J. Wan, M. Terashima, H. Noda, and M. Osawa, “Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111)”, The Journal of Physical Chemistry B, 104, 3563(2000). 11 . A. Michota, A. Kudelski, and J. Bukowska, “ Chemisorption of Cysteamine on Silver Studied by Surface-Ehance Raman Scattering”, Langmuir, 16, 10236(2000). 12 . A. Kudelski, “ Raman and Electrochemical Characterization of 2-Mercaptoethanesulfonate Monolayers on Silver: A Comparison with Monolayers of 3-Mercaptopropionic acid”, Langmuir, 18, 4741(2002). 13. A. Kudelski, “ Structures of Monolayers Formed from Different HS-(CH2)2-X thiols on Gold,silver and Copper Comparative Studies by Surface-Enhanced Raman scattering”, Journal of Raman Spectroscopy, 34, 853(2003). 14. A. Michota, A. Kudelski, and J. Bukoeska,“Influence of Electrolytes on the Structure of Cysteamine Monolayer on Silver Studied by Surface-Enhance Raman Scattering”, Journal of Raman Spectroscopy, 32, 345(2001). 15. A. Kudelski,M. Pecul and J.Bukowska,“Interaction of 2-Mercaptoethanesulfonate Monolayers on Silver with Sodium Cations”, Journal of Raman Spectroscopy, 33, 796(2002). 16. M.J. Esplandiu, H. Hagenstrom, and D.M. Kolb,“Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrode: 1.Surface Structure and Electrochemistry”, Langmuir, 17, 828(2001). 17. J. Noh, and M. Hara,“Nanoscopic Evidence for Dissociative Adsorption of Asymmetric Disulfide Self-Assembled Monolayers on Au(111) ” , Langmuir Letters, 16, 5(2000). 18. C. D. Bain, and G. M. Whitesides,“Formation of Monolayers by the Coadsorption of Thiols on Gold: Variatiom in the Length of the Alkyl Chain”, Journal of the American Chemical Society, 111, 7164(1989). 19. S. Eu, and W.K. Paik,“Self-Assembly Process of Organosulfur Molecular Layers on Gold Electrode: An In-Situ Eillpsometric and Electrochemical Study”, Chemistry Letters, 27, 405(1998). 20. H. Xiao,“Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, p.447, New Jersey(2001). 21. 張勁燕,“深次奈米矽製程技術”,第六章,五南圖書出版書局,民國91 年。 22. P. C.Andricacos, C. Uzoh, J. O Dukovic, J. Horkans, and H.Deligiami, “Damascene Copper Electroplating for Chip Interconnections”, IBM Journal of Research and Development, 42, 567(1998). 23. Z. Nagy, J. P. Blaudeau, N. C.Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, Journal of The Electrochemical Society, 142, C87(1995). 24. W. P. Dow, H. S. Huang, M. Y. Yen, and H. C. Huang,“Roles Of Chloride Ion in MicroVia Filling by Copper Electrodeposition II. Studies Using Electron Paramagnetic Resonance and Galvanostatic Measurements”, Journal of The Electrochemical Society, 152, C77(2005). 25. G. M. Brown, and G. A. Hope,“A SERS study of SO4 2-/Cl- Ion Adsorption at a Copper Electrode In Situ”, Journal of Electroanalytical Chemistry, 405, 211(1996). 26. N. Zukauskaite, and A. Malinauskas,“Electrocatalysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem., 24, 1564(1989). 27. J. P. Healy, and D.Pletcher,“The Chemistry of the Additives in an Acid Copper Electroplating Bath Part II. The Instability of 4,5-dithiaoctane-1,8-disulphonic Acid in the Bath on Open Circuit”, The Journal of Physical Chemistry, 338, 167(1992). 28. E. Mattsson, and J. O. M. Bockris“Galvanostic Studies of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System”, Transactions of the Faraday Society, 55, C1589(1959). 29. Z. V. Feng, A. A. Gewirth, and X. Li“Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in plating Bath: A Surface Enhanced Raman Study”, The Journal of Physical Chemistry B, 107, 9415(2003). 30. J. J. Kelly, and A. C. West,“Leveling of 200 nm Features by Organic Additives”, Electrochemical and Solid-State Letters, 2, 561(1999). 31. P. Taephaisitphongse, Y. Cao, and A. C. West,“Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, Journal of the Electrochemical Society, 148, 492(2001). 32. M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gorfon, and O. R.Melroy,“Electrochemical Deposition of Copper on a Gold Electrode in Sulfuric Acid:Resolution of the Interfacial Structure”,Physical. Review Letters, 75, 4472(1995). 33. H. Matsumoto, I. Oda, J. Inukai, and M. Ito,“Coadsorption of Copper and Halogens on Pt(111) and Au(111) Electrode Surface Studies by Scanning Tunneling Microscopy”, Journal of Electroanalytical Chemistry, 356, 275(1993). 34. H. Matsumoto, I. Oda, J. Inukai, and M. Ito,“Structures of Copper and Halides on Pt(111), Pt(100) and Au(111) Electrode Surfaces Studied by In-Situ Scanning Tunneling Microscopy”, Journal of Electroanalytical Chemistry, 379, 223(1994). 35. S. Wu, J. Lipkowski, T. Tyliszczak, and A. P. Hitchcock,“Effect of Anion Adsorption on Early Stages of Copper Electrocrystallization at Au(111) Surface”, Progress in Surface Science, 50, 227(1995). 36. J. Hotlos, O. M. Magnussen, and R. J. Behm,“Effect of Trace Amounts of Cl-in Cu Underpotential Deposition on Au(111) in Perchlorate Solutions: an In-Situ Scanning Tunneling Microscopy Study”, Surface Science, 335, 129(1995). 37. W. Haiss, and J. K. Sass,“Apparent Thermodynamic Inconsistencies in Surface Stress Measurements”, Journal of Electroanalytical Chemistry, 410, 119(1996). 38. E. Herrero, S. Glazier, and H. D. Abruna,“Electrochemical Studies of Cu UPD on Au(111) Single-Crystal Electrodes in the Presence of Bromide ”, The Journal of Physical Chemistry B, 102, 9825(1998). 39. A. W. Czanderna, D. E. King, and D. Spaulding,“Metal Overlayers on Organic Functional-Groups of Self-Organized Molecular Assembles 1. X-Ray Photoelectron-Spectroscopy of Interactions of Cu/COOH on 11-Mercaptoundecanoic acid”, Journal of Vacuum Science and Technology, A9,2607(1991). 40. M. J. Tarlov,“Silver Metalization of Octadecanethiol Monolayers Self-Assembled on Gold”, Langmuir, 8, 80(1992). 41. D. R. Jung, and A. W. Czanderna,“Chemical and Physical Interactions at Metal Self-Assembled Organic Monolayer Interfaces”, Critical. Reviews in Solid State and Materials Sciences, 19, 1(1994). 42. G. C. Herdt, D. R. Jung, and A. W. Czanderna,“Metal Overlayers on Organic Functional-Groups of Self-Organized Monolayer Assemblites Ion-Scattering Spectroscopy and X-Ray Photoelectron-Spectroscopy of Ag/COOH Interfaces”, Progress in Surface Science, 50, 103(1995). 43. M. A. Schneeweiss, H. Hagnestrom, M. J. Esplandiu, and D. M. Kolb, “Electrolytic Deposition onto Chemically Modified Electrodes”, Applied Physics. A, 69, 537(1999). 44. D. R. Jung, and A. W. Czanderna,“Chemical and Physical Interaction at Metal/Self-Assembled Organic Monolayer Interfaces”, Critical Reviews in Solid State and Materials Sciences, 19, 1(1994). 45. G. C. Herdt, D. R. Jung, and A. W. Czanderna,“Weak Interactions between Deposited Metal Overlayers and Organic Functional Groups of Self- Assembled Monolayers ” , Progress in Surface Science, 50, 103(1995). 46. J. A. M. Sondag-Huethorst, and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir, 11, 2237(1995). 47. F. P. Zamborini, J. K. Campbell, and R. M. Crooks,“Spectroscopic, Voltammetric, and Electrochemmical Scanning Tunneling Microscopic Study of Underpotentially Deposited Cu Corrosion and Passivation with Self-Assembled Organomercaptan Monolayers ” , Langmuir, 14,640(1998). 48. G. K.Jennings, and P. E. Laibinis,“Underpotentially Deposited Metal Layers of Silver Provide Enhanced Stability to Self-Assembled Alkanethiol Monolayers on Gold”, Langmuir, 12, 6173(1996). 49. L. Sun, and R. M. Crooks,“Imaging of Defects Contained within n-Alkylthiol Monolayers by Combination of Underpotential Deposition and Scanning Tunneling Microscopy: Kinetics of Self-Assembly”, Journal of The Electrochemical Society, 138, L23(1991). 50. J. A. M. Sondag-Huethorst, and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir, 11, 2237(1995). 51. C. M. Whelan, M. R. Smyth, and C. J. Barnes,“The Influence of Heterocyclic Thiols on the Electrodeposition of Cu on Au(111)”, Journal of Electroanalalytical. Chemistry, 441, 109(1998). 52 . M. Nishizawa, T. Sunagawa, and H. Yoneyama, “ Underpotential Deposition of Copper on Gold Electrodes through Self-Assembled Monolayers of Propanethiol”, Langmuir, 13, 5215(1997). 53. S. E. Gilbert, O. Cavalleri, and K. Kern,“Electrodeposition of Nanoparticles on Decanethiol-Covered Au(111) Surfaces: An In-Situ STM Investigation”, The Journal of Physical Chemistry, 100, 12123(1996). 54. O. Cavalleri, S. E. Gilbert, and K. Kern,“Growth Manipulation in Electrodeposition with Self-Assembled Monolayers”,Chemical Physics Letters, 269, 479(1997). 55. H. Hagenstrom, M. A. Schneeweiss, and D. M. Kolb“Modification of a Au(111) Electrode with Etanethiol.2.Copper Electrodeposition ” , Langmuir, 15, 7802(1999). 56. M. Petri, D. M. Kolb, U. Memmert, and H. Meyer“Adsorption of Mercaptopropionic Acid onto Au(111) Part II. Effect on Copper Electrodeposition”, Electrochimica Acta, 49, 183(2003). 57. 劉詠芳,“In-situ 掃描式電子穿隧顯微鏡在羥基及羧基硫醇單分子膜自組裝行為的研究”,國立成功大學化工系碩士論文,民國97 年。 58. 潘扶民,洪顯仁,林毓麟,郭裕銘,“ESCA, AES 及SIMS 表面分析技術”,材料與社會雜誌,第37 期,民國79 年. 59. A. J. Bard, and L. R. Faulkner,“Electrochemical Methods Fundamentals and Applications”, Chapter 13, John Wiley & Sons. Inc.(2001). 60. E. Herrero, L. J. Buller, and H. D. Abruna,“Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials”, Chemical Reviews, 101, 1897(2001). 61. A. Hamelin,“Cyclic Voltammetry at Gold Single-Crystal Surfaces.Part 1. Behaviour at Low- Index Faces”, Journal of Electroanalytical Chemistry, 407, 1(1996). 62. A. Kudelski,“Raman Study on the Structure of 3-Mercaptopropionic Acid Monolayers on Silver”, Surface Science, 502, 219(2002). 63 . S. Chon, and W. Paik, “ Adsorption of Self-Assembling Sulfur Compounds through Electrochemical Reactions: Effects of Potential, Acid and Oxidizing Agents ” , Physical Chemistry Chemical Physics, 3, 3405(2001). 64. S. D. Evan, A. Ulman, K. E. Goppert-Berarducci, and L. J. Gerenseer, “Self-Assembled Multilayers of ω-Mercaptoalkanoic Acids: Selective Ionic Interactions”, Journal of the American Chemical Society, 113, 5866(1991). 65. I. H. Inoue, A. Kakizaki, H. Namatame, A. Fujimori, A. Kobayashi, R. Kato and H. Kobayashi, “Copper Valence Fluctuation in the Organic Conductor (Dimethyl-N,N’-Dicyanoquinonediimine)2Cu Studied by X-Ray Photoemission Spectroscopy”, Physical Review B, 45, 5828(1991). 66. D. Payer, S. Rauschenbach, N. Malinowski, M. Konuma, C. Virojanadara, U. Starke, C. Dietrich-Buchecker, J-P Colin, J-P Sauvage, N. Lin, and K. Kern,“Toward Mechanical Switching of Surface-Adsorbed 【2】Catenane by in Situ Copper Complexation”, Journal of the American Chemical Society, 129, 15662(2007). 67. T. L. Freeman, S. D. Evans, and A. Ulman, “ XPS Studies of Self-Assembled Multilayer Films”, Langmuir, 11, 4411(1995). 68. W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide”, Journal of The Electrochemical Society, 156, D155(2009). 69. Z. Y. Jian, T. Y. Chang, Y. C. Yang, W. P. Dow, S. L. Yau, and Y. L. Lee, “ 3-Mercapto-1-propanesulfonic acid and Bis(3-sulfoproply) Disulfide Adsorbed on Au(111): In Situ Scanning Tunneling Microscopy and Electrochemical Studies”, Langmuir, 25, 179(2009). 70. C. K. Rhee, and Y. N. Kim,“Structural Evolution of Self-Assembled Monolayer of 1-Mercapto-2-Propanol on Au(111) in a N2 Flow: An Electrochemical and STM Study”, Applied Surface Science, 228, 313(2004).
摘要: 自組裝單分子膜(Self-assembled monolayer, SAM)源於對材料表面的修飾,SAM能夠改變材料表面特性。在工業電鍍銅中,硫醇分子必須結合氯離子才會產生加速銅沉積的作用,而氯離子與硫醇會在銅沉積上產生交互作用,導致銅易於沉積在基材上。此論文將針對不同末端官能基硫醇修飾在金(111)上探討其電化學性質。 本實驗藉由循環伏安法(cyclic voltammetry, CV)來分析不同末端官能基硫醇(HS-C-COONa(MAA), HS-C-C-NH2(CYS), HS-C-C-C-SO3Na(MPS), (S-C-C-C-SO3Na)2(SPS), HS-C-C-C-OH(MPE)),於金(111)電極表面檢測單分子膜的特性。觀察硫醇分子浸泡於超純水或硫酸水溶液中進行自組裝時的穩定性,利用CV分析在還原脫附過程中不同硫醇的吸附強弱;在超純水中進行自組裝時MPE>CYS>MAA>MPS>SPS,而在硫酸水溶液下進行自組裝其吸附力為MPE=MPS>SPS>MAA>CYS。 利用X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS)與循環伏安法(CV)觀察不同末端官能基硫醇修飾於金電極表面捕捉銅離子能力,發現隨著不同官能基,其拉電子能力以及吸附在電極上覆蓋率的不同,因而影響銅離子的捕捉。由CV可得知硫醇分子對銅離子捕捉能力是MAA>MPS>CYS>MPE。 藉由循環伏安法(CV)觀察有機分子修飾於金(111)電極上電化學鍍銅行為,發現將銅電鍍於MAA、MPS或SPS有機吸附層上,分子本身具有捕捉銅離子能力,導致在低電位沉積時加速銅沉積,但在過電位沉積時只有MAA分子產生加速銅沉積的作用。而系統中添加氯離子時,金(111)表面修飾MAA、MPS與SPS,皆會在過電位沉積產生加速銅沉積的效果,CYS與MPE則在表面中形成阻障層抑制銅沉積。
Self-assembled monolayers can modify material surfaces and change characteristics of material surfaces. In copper electrodeposition, thiol molecules must combine with chloride ions for acceleration of Cu electrodeposition, and chloride ions interact with thiol during deposition to make copper ions be easily deposited on substrate. This thesis focuses on self-assembled behavior of functionalized alkanethiols on Au (111) and their effects on copper electrodeposition. This experiment analyzes characteristics of thiol molecules (MAA, CYS, MPS, SPS, MPE) on Au(111) electrode surface by cyclic voltammetry. Using CV to observe stability of thiol SAM in DI water and sulfuric acid, and to analyze adsorbability of these thiol molecules. The adsorbability of these thiol molecules which are self-assembled in DI water is MPE>CYS>MAA>MPS>SPS, and that in sulfuric acid is MPE=MPS>SPS>MAA>CYS. The capability of catching copper ions by the end-group of thiol molecules was characterized by X-ray Photoelectron Spectrometer and CV. Different end-group of the thiol molecules exhibits different capability for catching copper ions and also influence their surface coverage on Au(111). From CV we can realize that the capability of the end-group for catching copper ions is MAA>MPS>CYS>MPE. Through CV to observe copper electrodeposition on thiol-modified Au(111), we find that while copper was electrodeposited on MAA, MPS or SPS, the thiol has ability to catch copper ion which results in accelerating copper deposition during underpotential deposition, but only MAA molecules accelerate overpotential position of copper. While MAA, MPS or SPS modify Au(111) in the system with chloride, copper electrodeposition was accelerated in overpotential deposition, and CYS and MPE formed a barrier layer on Au(111) surfaces to suppress copper deposition.
其他識別: U0005-1907201020221100
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.