Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3828
標題: 聚對苯二甲酸乙二酯/奈米碳管複合材料之製備與物性分析
Preparation and Physical Properties of Poly(ethylene terephthalate) / Carbon Nanotube Nanocomposites
作者: 詹茲戎
Chan, Tzu-Jung
關鍵字: Poly(ethylene terephthalate)
聚對苯二甲酸乙二酯
Carbon Nanotube
Silica
Nanocomposite
奈米碳管
二氧化矽
奈米複合材料
出版社: 化學工程學系所
引用: 1. 馬振基, 張文吉, 塑膠資訊, 第 67 期, 第45頁至第46頁 (2002) 2. 柯揚船, “聚合物-無機奈米複合材料”, 第2 頁至第35 頁, 五南圖書公司, 台北市, 初版 (2004) 3. 林唯芳, 塑膠資訊, 第60期, 第11頁(2001) 4. 葉明國, “聚合物化學”, 第218 頁至第220 頁, 學識文教出版中心, 台北市 (1994) 5. 蔡信行, “聚合物化學”, 第590 頁至第592 頁, 文京圖書有限公司, 台北縣 (2002) 6. 拓墣產業研究所, “半導體技術與趨勢前瞻”, 第108 頁至第115 頁, 拓墣科技, 台北市 (2003) 7. 徐國財, 張立德, “奈米複合材料”, 第108 頁至第115 頁, 五南圖書有限公司, 台北市 (2003) 8. Seeger, T.; Kohler, T.; Frauenheim, T.; Grobert, N.; Ruhle, M.; Terrones, M.; Seifert, G.; Chem. Commun., 1, 34-35 (2002) 9. Whitsitt, E. A.; Barron, A. R.; Nano Lett., 3, 775-778 (2003) 10. Sainsbury, T.; Itzmaurice, D.; Chem. Mater., 16, 3780-3790 (2004) 11. Bottni, M.; Tautz, L.; Huynh, H.; Monosov, E.; Bottni, N.; Dawson, M. I.; Bellucci, S.; Mustelin, T.; Chem. Commun., 758-760 (2005) 12. Li, X.; Liu, Y.; Fu, L.; Cao, L.; Wei, D.; Yu, W.; Adv. Funct. Mater., 16, 2431–2437 (2006) 13. Ogihara, H.; Sadakane, M.; Nodasaka, Y.; Ueda, W.; Chem. Mater., 18, 4981-4982 (2006) 14. Liu, Y.; Tang, J.; Chen, X.; Wang, R.; Pang, G.; Zhang, Y.; Xin, J. H.; Carbon, 44, 165-167 (2006) 15. Bottini, M.; Magrini, A.; Dawson, M.; Bergamaschi. A.; Mustelin, T.; Carbon, 44, 1298-1352 (2006) 16. Bourlinos, A. B.; Gerogakilas, V.; Zboril, R.; Dallas, P.; Carbon, 45, 2126-2139 (2007) 17. Babooram, K.; Narain, R.; Appl. Mater. Interfaces, 1, 181-186 (2009) 18. Li, Z.; Luo, G.; Wei, F.; Huang, Y.; Compos. Sci. Technol., 66, 1022 -1029 (2006) 19. Shin, D. H.; Yoon, K. H.; Kwon O. H.; Min, B. G.; Hwang, C. I.; J. Appl. Polym. Sci., 99, 900–904 (2006) 20. Hu, G.; Zhao, C.; Zhang S.; Yang, M.; Wang, Z.; Polymer, 47, 480-488 (2006) 21. Anand, K. A.; Agarwal, U. S.; Joseph, R.; Polymer, 47, 3976-3980 (2006) 22. Jin, S. H.; Park, Y. B.; Yoon, K. H.; Compos. Sci. Technol., 67, 3434–3441 (2007) 23. Kim, J. Y.; Park, H. S.; Kim, S. H.; J. Appl. Polym. Sci., 103, 1450-1457 (2007) 24. Wang, Y.; Deng, J.; Wang, K.; Zhang, Q.; Fu, Q.; J. Appl. Polym. Sci., 104, 3695-3701 (2007) 25. Anand, K. A.; Agarwal, U. S.; Joseph, R.; J. Appl. Polym. Sci., 104, 3090-3095 (2007) 26. Jin, S. H.; Yoon, K. H.; Park, Y. B.; Bang, D. S.; J. Appl. Polym. Sci., 107, 1163-1168 (2008) 27. Shen, L.; Gao, X.; Tong, Y.; Yeh, A.; Li, R.; Wu, D.; J. Appl. Polym. Sci., 108, 2865-2871 (2008) 28. Hu, G.; Feng, X.; Zhang, S.; Yang, M.; J. Appl. Polym. Sci., 108, 4080-4089 (2008) 29. Mun, S. J.; Jung, Y. M.; Kim, J. C.; Chang, J. H.; J. Appl. Polym. Sci., 109, 638-646 (2008) 30. Gao, Y.; Wang, Y.; Shi, J.; Bai, H.; Song, B.; Polym. Test., 27, 179-188 (2008) 31. Yoo, G. J.; Jung Y. C.; Cho, J. W.; J. Polym. Sci. Part B: Polym. Phys., 46, 900-910 (2008) 32. Kim, J. Y.; Choi, H. J.; Kang, C. S.; Kim, S. H.; Polym. Compos., 31, 858-869 (2009) 33. Hernandez, J. J.; Nogales, A.; Rueda, D. R.; Kwiatkowska, M.; Szymczyk, A.; Roslaniec, Z.; Concheso, A.; Guinea, I.; Ezquerra, T. A.; Compos. Sci. Technol., 69, 1867-1872 (2009) 34. Hu, H.; Browmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.; Chem. Phys. Lett., 345, 25-28 (2001) 35. Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Liu, J.; Smalley, R. E.; Chem. Phys. Lett., 321, 292-296 (2000) 36. Li, J.; Zhang, Y.; Appl. Surf. Sci., 252, 2944-2948 (2006) 37. Lin, S. Y.; Chen, E. C.; Liu, K. Y.; Wu, T. M.; Polym. Eng. Sci., 49, 2447-2453 (2009) 38. Wugang, F.; Lian, G.; J. Colloid Interface Sci., 297, 157-160 (2006) 39. Fusheng, L.; Shuxue, Z.; Limin, W.; J. Appl. Polym. Sci., 98, 2274–2281 (2005) 40. Guangyu, L.; Longyu, Li.; Xinlin, Y.; Zhao, D.; Polym. Advan. Technol., 19, 1922-1930 (2008) 41. Ni, K. F.; Shan, G. R.; Weng, Z. X.; Sheibat, N.; Fevotte, G.; Lefebvre, F.; Bourgeat, E.; Macromolecules, 38, 7321-7329 (2005) 42. Nayak, R. R.; Shanmugharaj, A. M.; Sung H. R.; Macromol. Chem. Phys., 209, 1137-1144 (2008) 43. Jang, J.; Sim, K.; Polymer, 38, 4043-4048 (1997) 44. Cole, K. C.; Ajji, A.; Pellerin, E.; Macromolecules, 35, 770-784 (2002) 45. Tzavalas, S.; Mouzakis, D. E.; Drakonakis, V.; Gregoriou, V. G.; J. Polym. Sci. Part B: Polym. Phys., 46, 668-676 (2008) 46. Shiau, S. H.; Kuo, C. Y.; Gau, C.; Liu, C. W.; Lin, C. H.; Jpn. J. Appl. Phys., 46, 635-6338 (2007) 47. Logakis, E.; Pissis, P.; Pospiech, D.; Korwitz, A.; Krause, B.; Reuter, U.; Potschke, P.; Eur. Polym. J, 46, 928–936 (2010) 48. Ahn, B. W.; Chi, Y. S.; Kang, T. J.; J. Appl. Polym. Sci., 110, 4055-4063 (2008)
摘要: 本研究目的為將多壁奈米碳管(Multi-walled carbon nanotube, CNT)進行二氧化矽改質後,與聚對苯二甲酸乙二酯(Polyethylene terephthalate, PET)進行熔融混煉得到PET/改質碳管奈米複合材料。將CNT先吸附改質矽烷(Modified Silane, MS),再利用四乙氧基矽烷(Tetraethylorthosilicate, TEOS)在碳管表面上生成二氧化矽,接著與甲基丙烯氧基丙基三甲氧基矽烷(Methacryl oxypropyl trimethoxy silane, MPS)反應,使二氧化矽表面上帶有C=C官能基。之後以表面聚合法在碳管表面上接枝親油性高分子,並藉由高分子中之環氧基和PET中之羧酸官能基(COOH)反應,期許改質碳管對PET的界面黏著力可以更好。 一開始為先將MS吸附在CNT表面上,得到吸附平衡曲線,得知CNT的酸根含量大約為5.91×10-4 mol/g-CNT。之後將CNT吸附不同倍率之MS(0.038倍、0.05倍和0.5倍),再經過與TEOS反應後得到二氧化矽改質碳管,以FTIR光譜分析知道有Si-O-Si 拉伸振動峰(二氧化矽)。能量散佈分析(EDS)可以得知Si/C原子比值隨著TEOS含量增加而增加。SEM型態分析發現碳管表面有二氧化矽粒子,表示二氧化矽生成在CNT表面上。與MPS反應後,FTIR分析得知有C=C 拉伸振動峰(MPS)的存在。接著以表面聚合法在碳管表面接枝親油性高分子。以FTIR光譜分析可以發現苯乙烯(styrene)與甲基丙烯酸環氧丙酯(Glycidyl methacrylate, GMA)的特徵峰,表示二氧化矽表面上已接枝高分子。 進一步以熔融混煉法製備PET/改質碳管奈米複合材料,由SEM斷裂面型態分析得知改質碳管對PET的界面黏著力較強。導電度分析中得知改質碳管中降低MS比例,則加入較低含量就可達到降低電阻率的效果。由DSC結果得知碳管皆以異相成核效應提高PET的冷卻結晶溫度。而DMA分析中,得知在改質碳管中降低MS的重量比例,可以有效的提昇PET的儲存模數(E’),如MS比例為CNT之0.038倍時,且含量為5.0 phr時,複材之E’可提高52 %; 由損失模數中得知改質碳管皆會提高PET的玻璃轉移溫度(Tg),表示碳管經過二氧化矽與親油性高分子改質後可以阻礙PET分子鍊的移動性。
In this study, the multi-walled carbon nanotube (CNT) was modified to prepare PET/CNT nanocomposites by melt blending. The CNT was adsorbed with a modified silane (MS), and then tetraethylorthosilicate (TEOS) was added to form silica on the CNT surface. Then, the reaction of methacryloxypropyltrimethoxysilane (MPS) on the SiO2/CNT was done to bring the active C=C function group. Finally, styrene and glycidyl methacrylate (GMA) were added and polymerized on SiO2/CNT surface. The epoxy functional group of GMA may react with the carboxylic acid group of PET to improve dispersibility. The adsorption isotherm of MS on CNT was studied, and the capacity of carboxyl of acid on CNT was evaluated as 5.19×10-4 mol/g-CNT. Three kinds of MS weight ratio with 0.038-fold, 0.05-fold and 0.5-fold to CNT were added for the preparation of SiO2/CNT. The Si-O-Si stretching from SiO2/CNT is revealed by FTIR. The Si/C atomic ratio of SiO2/CNT increases with the increase of TEOS as measured by Energy Dispersive X-ray Spectroscopy (EDS). SiO2 nanoparticles on the CNT surface were observed by FESEM. The C=C stretching belonging to MPS, grafted on silica, is confirmed by FTIR. For surface modification, styrene and GMA were added to obtain modified CNT. The characteristic peak of styrene and GMA is observed from FTIR. Furthermore, PET / modified CNT nanocomposites were prepared by melt blending. The interfacial interaction between modified CNT and PET is better than virgin CNT observed by FESEM. The percolation threshold decreases when the weight ratio of MS to CNT increases as determined by electrical conductivity measurement. It is obvious that the added CNT or modified CNT can serve as a good nucleating reagent for PET and accelerates the rate of crystallization. When decreasing the weight ratio of MS to CNT, the storage modulus (E') of composites increases based on DMA data. In particular, when the weight ratio of MS to CNT is 0.038, the E' is enhanced by 52% with a 5 phr of modified CNT. Also, adding the modified CNT can increase Tg of PET composites. This is explained by the confinement of dispersed polymer chains by modified CNT and limits their segmental motions.
URI: http://hdl.handle.net/11455/3828
其他識別: U0005-1908201011241900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201011241900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.