Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3835
標題: 聚碳酸酯型水性聚胺酯的合成與生物相容性研究
Synthesis of Polycarbonate Type Waterborne Polyurethane and Biocompatibility Evaluation
作者: 朱柏旭
Ju, Bo-Shiu
關鍵字: waterborne polycarbonateurethane
聚碳酸酯型水性聚胺酯
microphase separation
silver nanoparticles
biocompatibility
doping
annealing treatment
微相分離
生物相容性
奈米銀粒子
混摻
退火處理
出版社: 化學工程學系所
引用: 1. 徐善慧, 巧奪天工的人類智慧──組織工程. 科學發展, 2001. 2. 李紹雄,劉益軍, 聚氨酯樹脂及其應用. 化學工業出版社. 3. Gunter Oertel, Carl Hanser Verlag, Muenchen, Polyurethane Handbook, 1985. 4. C.H.M., J., Polymer Alloys, Blend, Blocks, Crafts, and Interpentrating Networks. Polymer Science and Techology, 1977. 5. Abouzahr, S., G.L. Wilkes, and Z. Ophir, Structure Property Behavior of Segmented Polyether Mdi Butanediol Based Urethanes - Effect of Composition Ratio. Polymer, 1982. 23(7): p. 1077-1086. 6. Chen, H., et al., Synthesis and properties of polyurethane modified with an aminoethylaminopropyl-substituted polydimethylsiloxane. II. Waterborne polyurethanes. Journal of Applied Polymer Science, 2001. 79(2): p. 295-301. 7. 顏明雄、蔡坪芫, 水性PU 混成物應用於織物整理加工. 2002. 8. 財團法人中國紡織工業研究中心, 水系氨基甲酸酯樹酯(PU)之合成技術專輯. 財團法人中國紡織工業研究中心, 1997. 9. 張阿松, 一鍋化製備混合脂肪族-芳香族二異氰酸鹽之水性PU及物性提升之探討. 國立中興大學,化學工程研究所,碩士論文, 2007. 10. J. W. Rosthauser, K.N., Journal of Coated Fabrics, 1986. 16. 11. Dieterich, D., Aqueous Emulsions, Dispersions and Solutions of Polyurethanes - Synthesis and Properties. Progress in Organic Coatings, 1981. 9(3): p. 281-340. 12. Takahara, A., et al., Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption. J Biomed Mater Res, 1992. 26(6): p. 801-18. 13. Stokes, K., R. McVenes, and J.M. Anderson, Polyurethane elastomer biostability. J Biomater Appl, 1995. 9(4): p. 321-54. 14. Reed, A.M., J. Potter, and M. Szycher, A solution grade biostable polyurethane elastomer: ChronoFlex AR. J Biomater Appl, 1994. 8(3): p. 210-36. 15. Capone, C.D., Biostability of a non-ether polyurethane. J Biomater Appl, 1992. 7(2): p. 108-29. 16. Mathur, A.B., et al., In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res, 1997. 36(2): p. 246-57. 17. 陳瑞祥, 簡介心臟血管系統用導管-兼談化學工業研究之TPU中央靜脈導管研發成果. 化工資訊, 1999. 2: p. 25. 18. 孫崧桓, 小口徑人工小血管經表面改質後,植覆內皮細胞之研究. 國立中興大學,化學工程研究所,碩士論文, 1999. 19. 林自長, 聚碳酸酯型聚胺酯生醫材料合成與生物相容性測試之研究. 國立中興大學,化學工程研究所,碩士論文, 2000. 20. Chou CW, H.S., Chang H, Tseng SM, Lin HR, Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polymer Degradation and Stability, 2006. 91: p. 1017-24. 21. Hung HS, W.C., Chien S, Hsu SH, The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials, 2009. 30: p. 1502-11. 22. Hung HS, T.C., Tseng HJ, Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A, 2009. 79: p. 759-70. 23. Hsu SH, T.C., Tseng HJ, Biostability and biocompatibility of poly(ester urethane)–gold nanocomposites. Acta Biomater, 2008. 4: p. 1797-1808. 24. Hsu SH, T.C., Tseng HJ, Gold Nanoparticles Induce Surface Morphological Transformation in Polyurethane and Affect the Cellular Response. Biomacromolecules, 2008. 9: p. 241-48. 25. Vane JR, A.E., Botting RM, Regulatory functions of the Vascular endothelium. The New England Journal of Medicine, 1990. 323: p. 27-36. 26. Virchow R, C.R., Cell Pathology: As Based Upon Physiological and Pathological Histology. New York: Dover, 1957: p. 239. 27. Povlishock JT, R.W., Injury of brain microvessels with a helium-neon laser and Evans blue can elicit local platelet aggregation without endothelial denudation. Arch Pathol Lab Med, 1987. 111: p. 415-21. 28. Yanagisawa M, K.H., Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T, A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988. 332: p. 411-15. 29. Palmer RM, F.A., Moncada S, Release of nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987. 327: p. 524-26. 30. Turner RR, B.J., Warnke RA., Endothelial cell phenotypic diversity. Am J Clin Pathol, 1987. 87: p. 569-75. 31. Vane JR, B.R., Mediators from the endothelial cell and their participation in inflammation. International Journal of Tissue Reactions, 1994. 16: p. 19-49.
摘要: 本研究主要藉由改變水性聚胺酯(WBPU)的軟鏈節種類,由此可以改變WBPU的微相分離程度,以達到提升生物相容性的效果。以聚碳酸酯二元醇(PC diol)作為新的軟鏈節,合成出聚碳酸酯型水性聚胺酯(WBPCU),取代原本以聚醚二元醇(PTMO)作為軟鏈節所合成的聚醚型水性聚胺酯(WBPEU)。實驗結果發現,WBPCU其微相分離程度較WBPEU大,且氧化穩定性較高並由牛頸動脈內皮細胞(BEC)之貼附及增生和內皮性一氧化氮合成(eNOS)的基因表現實驗發現,當BEC培養在WBPCU時,其增生數量與eNOS的基因表現量皆較WBPEU還高。藉由混摻中尺寸奈米銀粒子和退火處理的方式改變WBPCU的微相分離程度,探討微相分離與機械性質的關係。實驗結果發現,混摻30 ppm與60 ppm的中尺寸奈米銀粒子均可降低WBPCU的楊氏係數(Young''s modulus)。對退火處理而言,經140退火處理後的材料其斷裂強度和拉伸率均有顯著上升。結果顯示,經過混摻和退火處理均能降低材料的微相分離程度,同時也提升WBPCU的機械性質。
Two types of waterborne polyurethane (WBPU) were synthesized in this study, including waterborne polyetherurethane (WBPEU) and waterborne polycarbonateurethane (WBPCU). The mechanical properties of WBPCU were further modified by either annealing treatment or addition of silver nanoparticles (AgNPs). WBPEU was found to have higher fracture strength and elongation than WBPCU. The microphase separation of WBPEU was less than that of WBPCU. The oxidation stability, on the other hand, was better for WBPCU. When AgNPs were added to WBPCU at 30 ppm or 60 ppm, the Young's modulus decreased (more compliant), but the fracture strength remained similar. When WBPCU was annealed at 140, both the fracture strength and elongation increased. Bovine carotid arterial endothelial cells (BEC) showed the higher cellular proliferation and eNOS gene expression when cultured on WBPCU.
URI: http://hdl.handle.net/11455/3835
其他識別: U0005-2008201016471900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201016471900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.