Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3838
標題: 聚醚胺類衍生高分子之自我排列特性研究
Hierarchical Self-Assemblies of Poly(oxyalkylene)-Segmented Amidoacids
作者: 蔡韋政
Tsai, Wei-Cheng
關鍵字: Poly(oxyalkylene)-amine
聚醚胺
AFM
amphiphilic
molecules bundles
self-assembly
noncovalent bonding
界面活性劑
分子自組裝
原子力學顯微鏡
非共價鍵
出版社: 化學工程學系所
引用: (1) Whitesides, G. M.; Simanek, E. E.; Gorman, C. B. (1996) in NATO Advanced Study Institute on Chemical Synthesis: Gnosis to Prognosis, eds. Chatgilialoglu, C.; Snieckus, V. (Kluwer, Dordrecht, the Netherlands), pp. 565-588. (2) Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. Engl. 1996, 35, 1155-1196. (3) Lehn, J. M.; Ball, P. (2000) in The New Chemistry, ed. Hall, N. (Cambridge Univ. Press, Cambridge, U.K.), pp. 300-351. (4) Desiraju, G. R. (1989) Crystal Engineering: The Design of Organic Solids (Elsevier, New York). (5) Evans, D. F.; Wennerstrom, H. (1999) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (Wiley, New York). (6) Jones, M. N.; Chapman, D. (1995) Micelles, Monolayers, and Biomembranes (Wiley-Liss, New York). (7) Thomas, E. L. Science 1999, 286, 1307. (8) Kumar, A.; Abbott, N. A.; Kim, E.; Biebuyck, H. A.; Whitesides, G. M. Acc. Chem. Res. 1995, 28, 219-226. (9) Grantcharova, V.; Alm, E. J.; Baker, D.; Horwich, A. L. Curr. Opin. Struct. Biol. 2001, 11, 70-82. (10) Neidle, S. (1999) Oxford Handbook of Nucleic Acid Structure (Oxford Univ. Press, Oxford, U.K.) (11) Bongrand, P. Rep. Prog. Phys. 1999, 62, 921-968. (12) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K. ;Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York). (13) Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M. J. Am. Chem. Soc. 1996, 118, 4018-4029. (14) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119-1122. (15) De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433-437. (16) Whitesides, G. M. Sci. Am. 1995, 273, 146-149. (17) Isaacs, L.; Chin, D. N.; Bowden, N.; Xia, Y.; Whitesides, G. M. (1999) in Supramolecular Technology, ed. Reinhoudt, D. N. (Wiley, New York), pp. 1-46. (18) Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123-2126. (19) Rogers, J. A.; Bao, Z.; Baldwin, K.; Dodabalapur, A.; Crone, B.; Raju, V. R.; Kuck, V.; Katz, H.; Amundson, K.; Ewing, J.; Drzaic, P. Proc. Natl. Acad. Sci. USA 2001, 98, 4835-4840. (20) Jenekhe, S. A.; Chen, L. X. Science 1999, 283, 372-375. (21) Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mater. 2000, 12, 693-713. (22) Wu, M. H.; Whitesides, G. M. Appl. Phys. Lett. 2001, 78, 2273-2275. (23) Lieber, C. M. Sci. Am. 2001, 285, 58-64. (24) Klimov, V. I.; Mikhailovski, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Science 2000, 290, 314-317. (25) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989-1992. (26) Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J. Nature 1999, 398, 796-799. (27) Lehn, J.-M. NATO ASI Ser. Ser. E 1996, 320, 511-524. (28) Whitesides, G. M. Angew. Chem. Int. Ed. Engl. 1990, 29, 1209-1218. (29) Whitesides, G. M. Sci. Am. 2001, 285, 78-83. (30) Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66-69. (31) Bowden, N. B.; Weck, M.; Choi, I. S.; Whitesides, G. M. Acc. Chem. Res. 2001, 34, 231-238. (32) Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Nano Lett. 2001, 1, 453-456. (33) Reed, M. A.; Tour, J. M. Sci. Am. 2000, 282, 86-93. (34) Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Nature 1998, 396, 60-63. (35) Schon, J. H.; Meng, H.; Bao, Z. Nature 2001, 413, 713-716. (36) Breen, T. L.; Tien, J.; Oliver, S. R. J.; Hadzic, T.; Whitesides, G. M. Science 1999, 284, 948-951. (37) Madou, M. (1997) Fundamentals of Microfabrication (CRC, Boca Raton, FL). (38) Campbell, S. A. (1996) The Science and Engineering of Microelectronic Fabrication (Oxford Univ. Press, New York). (39) Qin, D.; Xia, Y.; Rogers, J. A.; Jackman, R. J.; Zhao, X.-M.; Whitesides, G. M. Top. Curr. Chem. 1998, 194, 1-20. (40) Paul, K. E.; Breen, T. L.; Aizenberg, J.; Whitesides, G. M. Appl. Phys. Lett. 1998, 73, 2893-2895. (41) Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823-1848. (42) Jacobs, H. O.; Tao, A. R.; Schwartz, A.; Gracias, D. H.; Whitesides, G. M. Science, 2002, 12, 153-155. (43) Syms, R. R. A.; Gormley, C.; Blackstone, S. Sens. Actuators A 2000, 2839, 1-11. (44) Gracias, D. H.; Kavthekar, V.; Love, J. C.; Paul, K. E.; Whitesides, G. M. Adv. Mater. 2002, 14, 235-238. (45) Jager, E. W. H.; Smela, E.; Ingana¨s, O. Science 2000, 290, 1540-1545. (46) Vlasov, Y. A.; Yao, N.; Norris, D. J. Adv. Mater. 1999, 11, 165-169. (47) Yin, Y.; Lu, Y.; Gates, B.; Xia, Y. J. Am Chem. Soc. 2001, 123, 8718-8729. (48) Lopes, W. A.; Jaeger, H. M. Nature 2001, 414, 735-738. (49) Leclère, P.; Lazzaroni, R.; Brèdas, J. L.; Yu, J. M.; Dubois, P. H. Langmuir 1996, 12, 4317-4320. (50) Magonov, S. N.; Whangbo, M. H. Surface analysis with STM and AFM: experimental and theoretical aspects of image analysis. Weinheim: Wiley-VCH; 1996. (51) Kopp-Marsaudon, S.; Lecleŕe, P. H, Dubourg, F.; Lazzaroni, R.; Aime, J. P. Langmuir 2000, 16, 8432-8437. (52) Wiesendanger, R. editor. Scanning probe microscopy and spectroscopy: methods and applications. Cambridge: Cambridge University, 1994. (1) (a) Zhang, L. F.; Eisenberg, A. Science 1995, 268, 1728. (b) Hammer, D. A.; Discher, D. E.; Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F. S. Science 1999, 284, 1143. (c) Maskos, M.; Jungmann, N.; Schmidt, M. Macromolecules 2001, 34, 8347. (2) Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, Germany, 1995. (3) Fendler, J. H. Chem. Mater. 2001, 13, 3196. (4) Hashimoto, T.; Sivaniah, E.; Hayashi, Y.; Matsubara, S.; Kiyono, S. Macromolecules 2005, 38, 1837. (5) Euliss, L. E.; Grancharov, S. G.; O'Brien, S.; Deming, T. J.; Stucky, G. D.; Murray, C. B.; Held, G. A. Nano Lett. 2003, 3, 1489. (6) Rao, C. N. R.; Sampathkumaran, E. V.; Nagarajan, R.; Paul, G.; Behera, J. N.; Choudhury, A. Chem. Mater. 2004, 16, 1441. (7) (a) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276, 384. (b) Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372. (8) Wiesner, U.; Garcia, C. B. W.; Zhang, Y.; Mahajan, S.; DiSalvo, F. J. Am. Chem. Soc. 2003, 125, 13310. (9) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418. (10) (a) Raoul, Z. J. Colloid Interface Sci. 2002, 248, 203. (b) Blom, A.; Drummond, C.; Wanless, E. J.; Richetti, P.; Warr, G. G. Langmuir 2005, 21, 2779. (11) (a) Myrvold, R.; Hansen, F. K.; Balinov, B.; Skurtveit, R. J. Colloid Interface Sci. 1999, 215, 409. (b) Char, K.; Cho, E. B.; Kwon, K. W. Chem. Mater. 2001, 13, 3837. (c) Yang, Z.; Sharma, R. Langmuir 2001, 17, 6254. (12) Guan, Z.; Chen, G. J. Am. Chem. Soc. 2004, 126, 2662. (13) Lin, J. J.; Chou, C. C.; Chang, Y. C.; Chiang, M. L. Macromolecules 2004, 37, 473. (14) Hudson, S. M.; Gil, E. S. Prog. Polym. Sci. 2004, 29, 1173. (15) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308. (1) (a) Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550-575. (b) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421. (2) Sheiko, S. S.; Möller, M. Chem. Rev. 2001, 101, 4099-4123. (3) García, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197-301. (4) Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1-68. (5) Xia, Y.; Whitesides, G. M. Langmuir 1997, 13, 2059-2076. (6) Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661-663. (7) Liu, G. Y.; Xu, S.; Qian, Y. Acc. Chem. Res. 2000, 33, 457-466. (8) Wang, L.; Wang, E. Langmuir 2004, 20, 2677-2682. (9) Liu, X.; Zhang, Yi.; Goswami,D. K.; Okasinski, J. S.; Salaita, K.; Sun, P.; Bedzyk, M. J.; Mirkin, C. A. Science 2005, 307, 1763-1766. (10) Schmitz, I.; Schreiner, M.; Friedbacher, G.; Grasserbauer, M. Anal. Chem. 1997, 69, 1012-1018. (11) Jalili, N.; Laxminarayana, K. Mechatronics 2004, 14, 907-945. (12) Mezzenga, R.; Ruokolainen, J.; Fredrickson, G. H.; Kramer, E. J.; Moses, D.; Heeger, A. J.; Ikkala, O. Science 2003, 299, 1872-1874. (13) Blau, W. J.; Fleming, A. J. Science 2004, 304, 1457-1458. (14) Peng, G.; Qiu, F.; Ginzburg, V. V.; Jasnow, D.; Balazs, A. C. Science 2000, 288, 1802-1804. (15) Yan, H.; Park, S. H.; Finkelstein, G..; Reif, J. H.; LaBean, T. H. Science 2003, 301, 1882-1884. (16) Zhou, G. J.; Zhang, S.; Ye, C. J. Phys. Chem. B 2004, 108, 3985-3988. (17) Fendler, J. H. Chem. Mater. 2001, 13, 3196-3210. (18) Lin,V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840-843. (19) Wang, C. H.; Tsai, W. C.; Wei, K. L.; Lin, J. J. J. Phys. Chem. B 2005, 109, 13510-13514. (20) Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832-8834. (1) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421. (2) Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98-101. (3) Jain, S.; Bates, F. S. Science 2003, 300, 460-464. (4) Pochan, D. J.; Chen, Z.; Cui, H.; Hales, K.; Qi, K.; Wooley, K. L. Science 2004, 306, 94-97. (5) Raez, J.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 2002, 124, 10381-10395. (6) Zheng, R.; Liu, G.; Yan, X. J. Am. Chem. Soc. 2005, 127, 15358-15359. (7) Zana, R.; Talmon, Y. Nature 1993, 362, 228-230. (8) Ringler, P.; Schulz, G. E. Science 2003, 302, 106-109. (9) Rothemund, P. W. K. Nature 2006, 440, 297-302. (10) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607-609. (11) Tovar, J. D.; Claussen, R. C.; Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7337-7345. (12) Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 2001, 293, 676-680. (13) Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington, D. A.; Kessler, J. A.; Stupp, S. I. Science 2004, 303, 1352-1355. (14) Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372-375. (15) Discher, D. E.; Eisenberg, A. Science 2002, 297, 967-973. (16) Ma, M.; Krikorian, V.; Yu, J. H.; Thomas, E. L.; Rutledge, G. C. Nano Lett. 2006, 6, 2969-2972. (17) Liu, X.; Kim, J. S.; Wu, J.; Eisenberg, A. Macromolecules 2005, 38, 6749-6751. (18) Chen, Z.; Cui, H.; Hales, K.; Li, Z.; Qi, K.; Pochan, D. J.; Wooley, K. L. J. Am. Chem. Soc. 2005, 127, 8592-8593. (19) Chowdhury, D.; Maoz, R.; Sagiv, J. Nano Lett. 2007, 7, 1770-1778. (20) Herranz, M. Á.; Colonna, B.; Echegoyen, L. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5040-4047. (21) Kim, J. H.; Rahman, M. S.; Lee, J. S.; Park, J. W. J. Am. Chem. Soc. 2007, 129, 7756-7757. (22) Dimitrova, I.; Trzebicka, B.; Müller, A. H. E.; Dworakb, A.; Tsvetanov, C. B. Prog. Polym. Sci. 2007, 32, 1275-1343. (23) Bhargava, P.; Zheng, J. X.; Li, P.; Quirk, R. P.; Harris, F. W.; Cheng, S. Z. D. Macromolecules 2006, 39, 4880-4888. (24) Agut, W.; Brûlet, A.; Taton, D.; Lecommandoux, S. Langmuir 2007, 23, 11526-11533. (25) Mountrichas, G.; Pispas, S. Macromolecules 2006, 39, 4767-4774. (26) Alexandridis, P.; Yang, L. Macromolecules 2000, 33, 5574-5587. (27) Antonietti, M.; Förster, S. Adv. Mater. 2003, 15, 1323-1333. (28) Groll, J.; Ademovic, Z.; Ameringer, T.; Klee, D.; Moeller, M. Biomacromolecules 2005, 6, 956-962. (29) Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. ACS Nano 2007, 1, 50-56. (30) Jo, S.; Park, K. Biomaterials 2000, 21, 605-616. (31) Hörber, J. K. H.; Miles, M. J. Science 2003, 302, 1002-1005. (32) Adler-Abramovich, L.; Reches, M.; Sedman, V. L.; Allen, S.; Tendler, S. J. B.; Gazit, E. Langmuir 2006, 22, 1313-1320. (33) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957-5967. (34) Hansma, P. K.; Elings, V. B.; Marti, O.; Bracker, C. E. Science 1988, 242, 209-216. (35) Jeong, S. M.; Park, J. W. J. Am. Chem. Soc. 2008, 130, 3497-3501. (36) Liu, X.; Zhang, Y.; Goswami, D. K.; Okasinski, J. S.; Salaita, K.; Sun, P.; Bedzyk, M. J.; Mirkin, C. A. Science 2005, 307, 1763-1766. (37) Wang, C. H.; Tsai, W. C.; Wei, K. L.; Lin, J. J. J. Phys. Chem. B 2005, 109, 13510-13514. (38) Lin, J. J.; Tsai, W. C.; Wang, C. H. Langmuir 2007, 23, 4108-4111. (39) Wei, K. L.; Hung, F. Y.; Lin, J. J. J. Polym. Sci. Pol. Chem. 2006, 44, 646-652. (40) Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832-8834. (41) Zanuy, D.; Casanovas, J.; Alemàn, C. J. Am. Chem. Soc. 2004, 126, 704-705. (42) Aucagne, V.; Leigh, D. A.; Lock, J. S.; Thomson, A. R. J. Am. Chem. Soc. 2006, 128, 1784-1785. (43) Liu, L.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876-10877. (44) Wang, H.; Keum, J. K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Science 2009, 323, 757-760. (45) Bhattacharjee, R. R.; Mandal, T. K. J. Colloid Interface Sci. 2007, 307, 288-295. (46) Lu, X.; Weiss, R. A. Macromolecules 1995, 28, 3022-3029. (47) Kim, J. H.; Min, B. R.; Won, J.; Joo, S. H.; Kim, S. H.; Kang, Y. S. Macromolecules 2003, 36, 6183-6188. (48) Wu, B.; Zhang, J.; Wei, Z.; Cai, S.; Liu. Z. Macromolecules 2001, 105, 5075-5078. (49) Kim, C. K.; Kim, C. K.; Lee, B. S.; Won, J.; Kim, H. S.; Kang, Y. S. J. Phys. Chem. A 2001, 105, 9024-9028.
摘要: 本論文共分三個章節(Chapters 2–4)來討論,以聚醚胺類衍生高分子POP –(CH2CH(CH3)O)x–或POE –(CH2CH2O)x– 為主要鏈段之amidoacid,因具有多個可鈉化之官能基,為一良好之界面活性劑,另外由於具有數種非共價鍵(noncovalent bonding forces),於改變鈉化程度,溫度,外添加AFM之力與製備方式,於原子力學顯微鏡(AFM)下可觀察分子不同之自我排列情形。 (1) 利用偏苯三酸酐和雙胺官能基的聚醚胺類所合成的衍生物poly(oxypropylene)-(POP-)-amidoacid salts,形成具規則性之分子束自我組裝特性。POP-amidoacid salts擁有對稱性結構,中間鏈段為親油性的POP鏈段,而末端含有四個對稱性的羧酸基結構,經由鈉化後,利用旋轉塗佈的方式將試樣分散於高分子基材的表面上,藉由原子力學顯微鏡(AFM)的量測,觀察到此高分子之一級結構以及規則排列的分子束型態。透過酸鹼度、分散速率以及濃度變化會影響分子的排列情形。POP-amidoacid salts有別於一般界面活性劑的一端親水與一端親油,或是自然界的磷脂物質一端親水兩端親油性結構,透過互補的非共價鍵作用力,會使分子趨向延伸而堆積成為分子束或是分子自身環繞而形成環路排列情形。在此形成不同分子型態的機制主要是由多樣的非共價鍵力量所控制,其中作用力包括氫鍵、離子鍵、苯環的π–π作用力以及凡得瓦爾力。 (2) 雙性型高分子POP-amidoacid salts於AFM下觀察到具有7–13 nm寬度之分子束,再經由TM-AFM tapping之過程,分子束之長度可由一開始之20 nm成長至600 nm以上,但不改變其分子束之寬度,此因AFM於掃瞄過程中以tip提供能量;若再經由加熱之程序,則可延伸分子束長度至微米等級,此種新穎之分子自我排列之操縱技術可歸因於分子間,分子與基材與外界能量給予分子之間的平衡。 (3) 以POE-amidoacid利用AFM觀察,此分子束具有5–10 nm之寬度,1–7 nm高度與5–120 nm 之長度,經由改變製備方式(spin-coating or dip-coating)與溫度變化,可改變分子自我排列之長度,並經由進一步的觀察,分子束間具有垂直交錯之現象,為一特殊之rattan-like shape,其中並可觀察到side arms之結構,且形成一接近於單分子層(self-assembled monolayer),此現象可歸因於POE與 –COOH之間之交互作用力。
In this thesis, there are three parts (Chapters 2-4) describing for the first time the formation of molecular bundle strands from the water-soluble poly(oxypropylene)-(POP-) amidoacid sodium salts. The unique combination of symmetrical structure and multiple polar functionalities rendered the molecules self-assembling into primarily molecular bundle strands. The pristine POP-amidoacid with the hydrophobic middle POP-block was actually insoluble in water and required the conversion into the corresponding sodium salts before performing self-assembling. Beside, we synthesize the POE-segmented amidoacid by following the same synthetic scheme but involving the hydrophilic POE-diamine at 2000 g/mol molecular weight. The difference in water solubility without the need of converting into sodium salts, the amidoacids consisting of POE- or -(CH2CH2O)x- as the middle block instead of POP- or -(CH2CH(CH3)O)x- were found to self-assemble into secondarily bundle clusters and hierarchical arrays. (1) Sodium salts of poly(oxypropylene)-trimellitic amido acid (POP-amido acid), prepared from the reaction of POP-diamines and trimellitic anhydride, were found to self-assemble into orderly molecular bundles. The POP-amido acid has a symmetrical structure consisting of a hydrophobic POP middle block (2000 g/mol) and four symmetrical carboxyl end groups. By dissolving in water and evaporating on a polyether sulfone film, the POP-amido acid molecules self-assembled into a unique array with average dimensions of 7-13 nm in width, 2-5 nm in height, and 20-50 nm in length, observed by atomic force microscope. Varied morphologies were also observed when varying the pH, solvents, evaporating rate, concentration, and substrate surface. Unlike the common surfactants of single head-to-tail structure and the naturally occurring phospholipids of one head and two tails, the synthesized POP derivative is a symmetrical structure of four hydrophilic heads and one long hydrophobic block. Through the complementary noncovalent bonding forces, the molecules tend to align into molecular bundles or loops as the primary structure. The formation of different morphologies is controlled by the intermolecular forces including hydrogen bonding, aromatic π-π stacking, ionic charge, and hydrophobic interaction, in a concerted manner. (2) Molecular self-aligning of amphiphilic molecules into bundles with a constant width of 7-13 nm was observed under tapping mode atomic force microscopy (TM-AFM). The requisite amphiphile, a poly(oxypropylene)-trimellitic amidoacid sodium salt, is constituted of a symmetric amidoacid structure with potential noncovalent forces of ionic charges, hydrogen bonds, π-π aromatic stacking, and hydrophobic interactions for intermolecular interaction. The amphiphiles enabled to self-align into orderly hierarchical assemblies after simply dissolved in water and dried under spin-coated evaporation. Under TM-AFM tapping process, the bundles increased their length from an initial 20 nm to 600 nm. A sequential TM-AFM scanning and interval heating process was designed to probe the morphological transformations from the molecular bundles to lengthy strips (nearly micrometer scale) and to columns (with 5-7 nm spacing between the parallel strips). The formation of hierarchical arrays via molecular stretching, aligning and connecting to each other was simultaneously observed and accelerated under the TM-AFM vibration energy. The molecular self-alignment caused by vibrations is envisioned to be a potential methodology for manipulating molecules into assembled templates, sensors, and optoelectronic devices. (3) We observed the arrays of molecular bundle strands in ribbon-shape and their perpendicular arrangement between the bundle strands from the molecules that consist of symmetrical structure of poly(oxyethylene)-segmented bis-amidoacid (POE-amidoacid). The molecules enabled to self-assemble into bundle strands in 5-10 nm width, 1-7 nm height and 5-120 nm length, which further self-arranged into secondary bundle clusters. By varying the conditions of spin-coating or dip-coating (immersion) on polyethersulfone film surface and drying temperature (26 oC or 19 oC), the morphologies of the bundle clusters were controllable. Lengthy rattan-like strands with multiple “side-armed” short bundle strands were observed from tapping-mode atomic force microscopy. Different arrays of parallel bundle strands in cluster (by spin-coating method) and rattan-like strands with side arms (by dip-coating method) were observed, with the same bundle units of 5-10 nm in width but varying in height from 0.5 nm to 7 nm. The bundle height of 0.5 nm obtained by carefully controlled dip-coating into film implies a “self-assembled monolayer (SAM)” formation. The perpendicular bundle side-arm arrangement is attributed to the complimentary non-covalent bonding forces of POE and -COOH interaction. The presence of POE crystalline segment (Tm = 22.6 oC, ΔH = 85.6 J/g) in the molecules contributed predominately for the formation of bundles, and hierarchical parallel clusters or perpendicular “side-arms”.
URI: http://hdl.handle.net/11455/3838
其他識別: U0005-2207201012000200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2207201012000200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.