Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3853
標題: 奈米矽片銀及其高分子複合材料之抗菌與生物相容性研究
Evaluation of the Antimicrobial Activity and Biocompatibility of Silver Nanoparticles Immobilized on Nano Silicate Platelets and the Nanocomposites with Polyurethane
作者: 李星達
Li, Shing-Da
關鍵字: nanosilicate platelets
奈米矽片
silver nanoparticles
antibacterial test
cytotoxicity
polyurethane
nanocomposites
奈米銀粒子
抗菌測試
細胞毒性
聚胺酯
奈米複合材料
出版社: 化學工程學系所
引用: 1. 鞠建英, 膨潤土在工程中的開發與應用. 中國建材工業出版社, 2003. 2. C.R. Tseng, J.Y. Wu, H.Y. Lee, and F.C. Chang, Preparation and crystallization behavior of syndiotactic polystyrene-clay nanocomposites. Polymer, 2001. 42(25): p. 10063-10070. 3. J.J. Lin, C.C. Chu, M.L. Chiang, and W.C. Tsai, First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. J Phys Chem B, 2006. 110(37): p. 18115-18120. 4. F.H. Lin, Y.H. Lee, C.H. Jian, J.M. Wong, M.J. Shieh, and C.Y. Wang, A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials, 2002. 23(9): p. 1981-7. 5. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett, 2005. 5(4): p. 709-11. 6. D.R. Katti, P. Ghosh, S. Schmidt, and K.S. Katti, Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids. Biomacromolecules, 2005. 6(6): p. 3276-82. 7. F.H. Lin, C.H. Chen, W.T. Cheng, and T.F. Kuo, Modified montmorillonite as vector for gene delivery. Biomaterials, 2006. 27(17): p. 3333-8. 8. Y. Cheng, C.S. A, J.D. Meyers, I. Panagopoulos, B. Fei, and C. Burda, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc, 2008. 130(32): p. 10643-7. 9. K. Kerman, M. Saito, S. Yamamura, Y. Takamura, and E. Tamiya, Nanomaterial-based electrochemical biosensors for medical applications. Trac-Trends Anal Chem, 2008. 27(7): p. 585-592. 10. H.L. Su, C.C. Chou, D.J. Hung, S.H. Lin, I.C. Pao, J.H. Lin, F.L. Huang, R.X. Dong, and J.J. Lin, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 2009. 30(30): p. 5979-87. 11. P.R. Li, J.C. Wei, Y.F. Chiu, H.L. Su, F.C. Peng, and J.J. Lin, Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl Mater Interfaces, 2010. 2(6): p. 1608-13. 12. S.H. Hsu, H.J. Tseng, H.S. Hung, M.C. Wang, C.H. Hung, P.R. Li, and J.J. Lin, Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. ACS Appl Mater Interfaces, 2009. 1(11): p. 2556-64. 13. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, and J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res, 2000. 52(4): p. 662-8. 14. I. Sondi and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci, 2004. 275(1): p. 177-82. 15. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu, and C.M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem, 2007. 12(4): p. 527-34. 16. P.V. AshaRani, G. Low Kah Mun, M.P. Hande, and S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009. 3(2): p. 279-90. 17. C.H.M. Jacques, Polymer Alloys, Blend, Blocks, Crafts, and Interpentrating Networks. Polymer Science and Techology, 1977. 18. S. Abouzahr, G.L. Wilkes, and Z. Ophir, Structure Property Behavior of Segmented Polyether Mdi Butanediol Based Urethanes - Effect of Composition Ratio. Polymer, 1982. 23(7): p. 1077-1086. 19. 李昭雄,劉益軍, 聚氨酯樹脂及其應用. 化學工業出版社. 20. H. Chen, Q. Fan, D. Chen, and X. Yu, Synthesis and properties of polyurethane modified with an aminoethylaminopropyl-substituted polydimethylsiloxane. II. Waterborne polyurethanes. J Appl Polym Sci, 2001. 79(2): p. 295-301. 21. 顏明雄、蔡坪芫, 水性PU 混成物應用於織物整理加工. 2002. 22. M.W. King, Z. Zhang, P. Ukpabi, D. Murphy, and R. Guidoin, Quantitative analysis of the surface morphology and textile structure of the polyurethane Vascugraft arterial prosthesis using image and statistical analyses. Biomaterials, 1994. 15(8): p. 621-7. 23. R. Guidoin, M. Sigot, M. King, and M.F. Sigot-Luizard, Biocompatibility of the Vascugraft: evaluation of a novel polyester urethane vascular substitute by an organotypic culture technique. Biomaterials, 1992. 13(5): p. 281-8. 24. B. Huang, Y. Marois, R. Roy, M. Julien, and R. Guidoin, Cellular reaction to the Vascugraft polyesterurethane vascular prosthesis: in vivo studies in rats. Biomaterials, 1992. 13(4): p. 209-16. 25. T.G. Grasel and S.L. Cooper, Properties and biological interactions of polyurethane anionomers: effect of sulfonate incorporation. J Biomed Mater Res, 1989. 23(3): p. 311-38. 26. C.S. Hergenrother RW, Improved materials for blood contacting applications blends of sulphonated and non sulphonated polyurethanes. J Mat Sci, 1992. 27. D. Dieterich, Aqueous emulsions, dispersions and solutions of polyurethane synthesis and properties. Prog Org Coat, 1981. 28. 孫崧桓, 小口徑人工小血管經表面改質後,植覆內皮細胞之研究. 國立中興大學,化學工程研究所,碩士論文, 1999. 29. 林自長, 聚碳酸酯型聚胺酯生醫材料合成與生物相容性測試之研究. 國立中興大學,化學工程研究所,碩士論文, 2000. 30. C.W. Chou, S.H. Hsu, H. Chang, S.M. Tseng, and H.R. Lin, Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polym Degrad Stabil, 2006. 91(5): p. 1017-1024. 31. H.S. Hung, C.C. Wu, S. Chien, and S.H. Hsu, The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials, 2009. 30(8): p. 1502-1511. 32. S.H. Hsu, C.M. Tang, and H.J. Tseng, Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res Part A, 2006. 79A(4): p. 759-770. 33. S.H. Hsu, C.M. Tang, and H.J. Tseng, Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites. Acta Biomater, 2008. 4(6): p. 1797-808. 34. S.H. Hsu, C.M. Tang, and H.J. Tseng, Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules, 2008. 9(1): p. 241-8. 35. H.L. Liu, S.A. Dai, K.Y. Fu, and S.H. Hsu, Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomed, 2010. 5: p. 1017-1028. 36. H.J. Yen, S.H. Hsu, and C.L. Tsai, Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small, 2009. 5(13): p. 1553-61. 37. S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, and J.J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitro, 2005. 19(7): p. 975-83. 38. S. Kim, J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, and D.Y. Ryu, Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitro, 2009. 23(6): p. 1076-84. 39. R. Foldbjerg, D.A. Dang, and H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol, 2010. 40. E. Gozal, L.A. Ortiz, X. Zou, M.E. Burow, J.A. Lasky, and M. Friedman, Silica-induced apoptosis in murine macrophage: involvement of tumor necrosis factor-alpha and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol, 2002. 27(1): p. 91-8. 41. M.S. Thibodeau, C. Giardina, D.A. Knecht, J. Helble, and A.K. Hubbard, Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci, 2004. 80(1): p. 34-48. 42. B.D. Chithrani, A.A. Ghazani, and W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 2006. 6(4): p. 662-8. 43. M. Roser, D. Fischer, and T. Kissel, Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm, 1998. 46(3): p. 255-63. 44. F. Chellat, Y. Merhi, A. Moreau, and L. Yahia, Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials, 2005. 26(35): p. 7260-75. 45. B.I. Gerashchenko, V.M. Gun''ko, Gerashchenko, II, I.F. Mironyuk, R. Leboda, and H. Hosoya, Probing the silica surfaces by red blood cells. Cytometry, 2002. 49(2): p. 56-61. 46. Slowing, II, C.W. Wu, J.L. Vivero-Escoto, and V.S. Lin, Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small, 2009. 5(1): p. 57-62. 47. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, and M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007. 3(1): p. 95-101. 48. X.H. Xu, W.J. Brownlow, S.V. Kyriacou, Q. Wan, and J.J. Viola, Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry, 2004. 43(32): p. 10400-13. 49. K.H. Cho, J.E. Park, T. Osaka, and S.G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005. 51(5): p. 956-960. 50. L.F. Espinosa-Cristobal, G.A. Martinez-Castanon, R.E. Martinez-Martinez, J.P. Loyola-Rodriguez, N. Patino-Marin, J.F. Reyes-Macias, and F. Ruiz, Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater Lett, 2009. 63(29): p. 2603-2606. 51. S.H. Hsu, H.J. Tseng, and Y.C. Lin, The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials, 2010. 31(26): p. 6796-808.
摘要: 奈米化的銀粒子具有卓越的殺菌功效,但其尺寸與分散性皆影響殺菌性,且奈米銀粒子可能對細胞造成傷害。因此,評估奈米銀粒子濃度的安全性及殺菌性在未來生醫上的應用是一項重要課題。本研究將奈米銀粒子以特定當量附著於奈米矽片上,並均勻分散於水中,來改善奈米銀粒子凝聚的情形,並進行生物相容性與抗菌測試。結果發現,奈米矽片銀在10 ppm時對大腸桿菌有極佳的殺菌效果,且細胞毒性及溶血反應低,但其對人類肝腫瘤細胞(HepG2)的半致死劑量約為25 ppm。而將奈米矽片銀混摻聚胺酯所形成的高分子奈米複合材料,以進一步降低其細胞毒性,並探討其抗菌效果。結果發現,形成高分子奈米複合材料後,仍具有極佳之抗菌能力。只需添加500 ppm的濃度到高分子中,即達成99.99%之抑菌性,且無顯示任何細胞毒性。
Silver nanoparticles have been known for bactericidal abilities. However, particle size and dispersion will affect the antibacterial potency, and nanoparticles may cause injuries to the biological system. Therefore, the issue about safety and antibacterial property of concentration of silver nanoparticles for biological application should be evaluated. The nanomaterials used in this article were synthesized using nanosilicate platelets (NSP) as the dispersing agent for immobilization of silver nanoparticles (AgNPs/NSP). Polyurethane-AgNPs/NSP nanocomposites from a polyether-type waterborne polyurethane (PU) containing various concentration of AgNPs/NSP were prepared. AgNPs/NSP were found to have a high antibacterial efficacy, low cytotoxicity and non-hemolytic effect at the concentration of 10 ppm. Polyurethane-AgNPs/NSP nanocomposites demonstrated superior microbiostatic ability as well as non-toxicity.
URI: http://hdl.handle.net/11455/3853
其他識別: U0005-3101201118515700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3101201118515700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.