Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3854
標題: 兩并型末端官能基之規則樹枝狀分子製備及其在光電上之研究
Synthesis of Dendrons with Two Alternating Peripheral Functional Groups and Their Applications in Electro-Optics
作者: 蔡偉祥
Tsai, Wei-Hsiang
關鍵字: NLO
二次非線性光學
dendron
site-isolation
MMT
樹枝狀高分子
出版社: 化學工程學系所
引用: 1. Zyss, J.; Chemla, D. S., Nonlinear Optical Properties of Organic Molecules and Crystals 1987, Vol I, Chapter2-1. 2. Kuo, W. J.; Hsiue, G. H.; Jeng, R. J. J. Mater. Chem. 2002, 12, 868. 3 .Van den Broeck, K.; Verbiest, T.; Degryse, J.; Van Beylen, M.; Persoons, A.; Samyn, C. Polymer. 2001, 42, 3315. 4 .Tsai, H. C.; Kuo, W. J.; Hsiue, G. H. Macromol. Rapid Commun. 2005, 26, 986. 5 .Xu, G.; Si, J.; Liu, X.; Yang, O.; Ye, P.; Li, Z.; Shen, Y. Opt. Commun. 1998, 153, 95. 6. Kuo, W. J.; Chang, M. C.; Juang, T. Y.; Chen, C. P.; Chen, C. T.; Chang, H. L.; Jeng, R. J. Polym. Adv. Technol. 2005, 16, 515. 7. Chen, Y. C.; Chang, H.L.; Lee, R.H.; Dai, S.A.; Su, W.C.; Jeng, R.J. Polym. Adv. Technol. 2009, 20, 493. 8. Marder, S. R.; Perry, J. W. Science. 1994, 263, 1706. 9 .Sigelle, M.; Hierle, R. J. Appl. Phys. 1981, 52, 4199. 10. Singer, K. D.; Kuzyk, M. G.; Holland, W. R.; Lalama, S.; Comizzoli, R. B.; Katz, H. E.; Schilling, M. L. Appl. Phys. Lett. 1988, 53, 1800. 11. Uchiki, H.; Kobavashi, T. J. Appl. Phys. 1988, 64, 2625. 12. Messier, J.; Kajzar, F.; Prasad, P., Organic Molecules for Nonlinear Optics and Photonics Series: E. 1991, 194. 13. Teng, C. C.; Man, H. T. Appl. Phys. Lett. 1990, 56, 1734. 14. Shuto, Y.; Amano, M. J. Appl. Phys. 1995, 77, 4632. 15. Dalton, L. R.; Haper, A. W., Photoactive organic materials for Electro-optic modulator and high density Optical memory applications., In: Kajzar, F.; Avranovich, V. M.; Lee, C. Y. C. (eds) Photoactive organic materials: science and application. NATO ASI Series, vol 9, Kluwer Academic, Dordrecht, 1996, 183. 16. McLellan, E. J.; Figueira, J. F. Rev. Sci. Instrum. 1979, 50, 1213. 17. Davydov, B. L.; Dekacheva, L. D.; Dunina, V. V.; Zhabotinskii, M. E.; Zolin, V. F.; Koreneva, L. G.; Samokhina, M. A. JEPT Lett. 1970, 12, 16. 18. Levine, B. F.; Bethea, G. F. J. Chem. Phys. 1975, 63, 2666. 19. Ouder, J. L. J. Chem. Phys. 1977, 67, 446. 20. Pethkar, S.; Dharmadhikari, J. A.; Athawale, A. A.; Vijayamohanan, K.; Aiyer, R. C. J. Phys. Chem. B. 2001, 105, 5110. 21. Xie, H. Q.; Liu, Z. H.; Huang, X. D.; Guo, J. S. Eur. Polym. J. 2001, 37,497. 22. Kajzar, F.; Lee, K. S.; Jen, A. K. Y. Adv. polym. Sci. 2003, 161, 1. 23. Meredith, G. R.; VanDusen, J. G.; Williams, D. J. Macromolecules 1982, 15, 1385. 24. Shi, W.; Fang, C.; Pan, Q.; Qin, Z.; Xu, D.; Yu, J. J. Phys. D: Appl. Phys. 2002, 35, 1404. 25. Wu, J. W.; Valley, J. F.; Ermer, S.; Binkley, E. S.; Kenney, J. T.; Lipscomb, G. F.; Lytel, R. Appl. Phys. Lett. 1991, 58, 225. 26. Kuo, W. J.; Hsiue, G. H.; Jeng, R. J. Macromolecules. 2001, 34, 2373. 27. Shi, Y. Q.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119. 28.Yesodha, S. K.; Sadashiva Pillai, C. K.; Tsutsum, N. Prog. Polym. Sci. 2004, 29, 45. 29. Becker, M. W.; Sapochak, L. S.; Ghosen, R.; Xu,C.; Dalton, L. R. Chem. Mater. 1994, 6, 104. 30. Chen, T. A.; Jen, A. K. Y.; Cai, Y. J. Am. Chem. Soc. 1995, 117, 7295. 31. Li, Z.; Wu, W. ; Li, Q. ; Xiao, L. Dyes and Pigments, 2010,84, 134. 32. He,M ; Zhou,Y.; Miao, J. ; Liu, C. ; Cui, Y. ; Zhang , T.Dyes and Pigments. 2010,86 ,107 33. Zeng, Q. ; Qiu, G. ; Ye, C. ; Qin, J. ; Li, Z. Dyes and Pigments. 2010, 84, 229. 34. Tsutsumi, N.; Morishima, M.; Sakai, W. Macromolecules. 1998, 31, 7764. 35. Yoon, K. R.; Byun, N. M.; Lee, H. Synth. Metals. 2007, 157, 603. 36. Gacal, B.; Clanga, L.; Agag, T.; Takeeichi, T.; Yagci, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2774. 37. Seo, D. K.; Lim, H. S.; Lee, J. Y.; Kim, W. G. Mol, Cryst. Liq. Cryst. 2006, 445, 323. 38. Marturunkaku, S; Chen, J. I.; Li, L.; Jeng, R. J. Kumar, J.; Tripathy, S. K. Chem. Mater. 1993, 5, 592. 39. Park, C. K.; Zieba, J.; Zhao, C. F.; Swedek, B.; Wijekoon, W. M. K. P.; Prasad, P. N. Macromolecules. 1995, 28, 3713. 40. Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. J. Am. Chem. Soc. 2000, 122, 3174. 41. Ma, H.; Chen,B.; Sassa, T.; Dalton, L. R. Jen, A. K. Y. J. Am. Chem. Soc. 2001, 123, 986. 42. Scarpaci, A. ; Blart, E. ACS Appl. Mater. Interface. 2009, 1, 1799 43. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819. 44. Tomalia, D. A.; Baker, H.; Dewald, J; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117. 45. Moorefield, C. N.; Newkome, G. R.; Baker, G. R. Aldrichimica Acta. 1992, 25,31. 46. De Gennes, P. G.; Hervet, H. J. Phys. Lett. 1983, 44, 351. 47. Frauenrath, H. Prog. Polym. Sci. 2005, 30, 325. 48. Emran, S. K.; Newkome, G. R.; Weis, C. D.; Harmon, J. P. J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 2038. 49. Jikei, M.; Kakimoto, M. Prog. Polym. Sci. 2001, 26, 1233. 50. Robinson, B. H.; Dalton, L. R. J. Phys. Chem. A. 2000, 104, 4785. 51. Li, Z. ; Zeng, Q. ; Yu, G. ; Li, Zhen. ; Ye, C.; Liu, Y.; Qin, J. Macromol. Rapid. Commun. 2008, 29, 136. 52. Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Adv. Funct. Mater. 2002, 12, 565. 53. Luo, J.; Haller, M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, Y.; Chen, B.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y. J. Phys. Chem. B. 2004, 108, 8523. 54. Do, J.; Park, S. K.; Ju, J. J.; Park, S.; Lee, M. H. Macromol. Chem. Phys. 2003, 204, 410. 55. Dalton, L. R.; Robinson, B. H.; Jen, A. K. Y. ; Steier, W. H.; Nielsen, R. Optic. Mater. 2002, 21, 19. 56. Tian, Y.; Chen, C. Y.; Haller, M.; Tucker, N. M.; Ka, J. W.; Luo, J.; Huang, S.; Jen, A. K. Y. Macromolecules. 2007, 40, 97. 57. Kim, T. D.; Luo, J.; Cheng, Y. J.; Shi, Z.; Hau, S.; Jang, S. H.; Zhou, X. H.; Tian, Y.; Polishaka, B.; Huang, S.; Ma, H.; Dalton, L. R.; Jen. A. K. Y. J. Phys. Chem. C. 2008, 112, 8091. 58. Li, Z.; Yu, G. ; Wu. W.; Liu. Y.; Ye, C.; Qin, J.; Li, Z. Macromolecules. 2009, 42, 3864. 59. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 682. 60.Tasi, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. J. Mater. Chem. 2006, 16, 2056. 61.Chen, Y. C.; Chang, H. L.; Lee, R. H.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polym. Adv. Tech. 2009, 20, 493. 62. Ray, S. S.; Okamoto, M. Prog. Polym. Sci 2003, 28, 1539. 63. Ray, S. S.; Okamoto, K. M. Macromolecules. 2003, 36, 2355. 64. Lin, J. J.; Cheng, I. J.; Wamg, R. C.; Lee, R. J. Macromolecules. 2001, 34, 8832. 65. Chou, C. C.; Chang, Y. C. ; Chiang, M. L.; Lin, J. J. Macromolecules. 2004, 37, 473. 66. Chou, C. C.; Lin, J. J. Macromolecules. 2005, 38, 230. 67. Choy, J. H.; Kwak, S. Y.J; Park, J. S.; Angew. Chem. Int. Ed. 2000, 39, 4041. 68. Costa, A. S.; Imae, T. Langmuir. 2004, 20, 8865. 69. Acosta, E. J.; Deng, Y.; White, G. N.; Dixon, J. B.; Mcinnes, K. J.; Senseman, S. A.; Frantzen, A. S.; Simanek, F. E. Chem. Mater. 2003, 15, 2903. 70. Juang, T. Y.; Tsai, C. C.; Wu, T. M.; Dai, S. A.; Chen, C. P.; Lin, J. J.; Liu, Y. L.; Jeng, R. J. Nanotechnology. 2007, 18, 205606. 71. Wang, W. J.; Kuo, W.; Wang, W. J. J. Polym. Sci. Part B: Polym Phys. 2002, 40, 1690. 72. Yang, C.; Zhou, H.; Chen, X.; Liu, Y.; Qin, J., J. Mater. Chem. 2005, 15,1637. 73. Chao, T. Y.; Chang, H. L.; Su, W. C. ; Wu, J. Y. ; Jeng, R. J. Dyes and Pigments. 2008, 77, 515. 74. Chen, Y.C.; Juang, T.Y.; Dai, S.A.; Wu,T.M.; Lin,J.J.; Jeng, R.J.Macromol. Rapid Commun. 2008, 29, 587. 75. Chen, Y. C.;Juang, T. Y.;Wu, T. M.; Dai, S. H.; Kuo, W. J.; Liu, Y. L.; Chen, M. C.; Jeng, R. J. ACS Applied Materials & Interfaces. 2009, 1 ,2371 76. Teng , C. C., Man, H. T. Appl. Phys. Lett. 1990, 56, 1734. 77. Mortazavi, M. A.; Knoesen, A.; Kowel, S. T.; Henry, R. A.; Hoover, J. M.; Lindsay,G. A. Appl. Phys. B .1991, 53, 287. 78. Schildkraut, J. S. Appl. Opt. 1990, 29, 2839. 79. Shuto, Y. ; Amano, M. J. Appl. Phys. 1995, 77, 4632. 80. Jeng, R. J.; Hsiue, G. H.; Chen, J. I.; Marturunkakul, S.; Li, L.; Jiang, X. L. J. Appl. Polym. Sco. 1995, 55, 209. 81. Shi, W.; Fang, C. S.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Wei, H. Z.; Yu, J. Z. Optics and Lasers in Engineering. 2000, 33, 21. 82. Kuo, M. J.; Tung, Y. C.; Yeh, C. L.; Chang, H. Y.; Jeng, R. J.; Dai, S. A. Macromolecules. 2008, 10.1021/ma801889x. 83. Vaia, R. A.; Sauer, B. B.; Tse, O. K.; Giannelis, E. P. J. Polym. Sci. Part B:Polym. Phys. 1997, 35, 59. 84. Noh, M. W.; Lee, D. C. Polym. Bullet. 1999, 42, 619. 85. Chang, H. L.; Lin, H. L.; Wang, Y. C.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polymer. 2007, 48, 2046. 86. Beckers, E. H. A.; Mesker, S. C. J.; Schenning, A. P. H.; Chen, Z.; Wurthner, F.; Marsal, P.; Beljonne, D. Cornil, J.; Janssen, R. J. J. Am. Chem. Soc. 2006, 128, 649. 87. Liu, J. G.; Li, Z. X.; Wu, J.T.; Zhou,H.W.; Wang,F.S.; Yang,S.Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1583. 88. Park, J. C.; Park, D. J.; Son, K. C.; Kim, Y. B. Mol. Cryst. Liq. Cryst. 2007, 479, 191. 89. Liu, Z.; Yu, F.; Zhang, Q.; Zeng, Y.; Wang, Y. Europe. Polym. J. 2008, 44, 2718. 90. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Yang, L.; Wei, Y. J. Am. Chem. Soc. 2004, 126, 15180. 91. Datta, A.; Pati, S. K. J. Phys. Chem. A. 2004, 108, 320. 92. Juang , T. Y. ; Chen , Y. C.; Tsai , C. C. Appl. Clay Science .2010,48 ,103 93. 吳天豪,國立中興大學化學工程學系碩士論文, 2010。 94. Yang, C. P.;Chen, Y. C. J Appl Polym Sci. 2005, 96, 2399.
摘要: 好的有機NLO光電材料須具備高的光電係數以及長時間熱穩定性兩大重要需求。本實驗方向是探討其自組裝之機制,將構築單元4-isocyanato-4’(3,3-dimethylazetidine-2,4-dione)diphenylmethane (IDD)當作核心與發色團基 (DR1)和十八長碳鏈 ( stearyl-group )製備出不同代數之雙并型末端官能基樹枝狀有機黏土奈米複合材料,與先前本實驗室以IDD為構築單元,末端皆為發色團基 (DR1)之樹枝狀有機黏土奈米複合材料比較,探討其光電性質之差異。 本研究首先利用IDD中之-NCO官能基與 (DR1和Stearyl Alcohol) 中之-OH 官能基進行加成反應產生urethane 鍵結,形成G0.5。之後,再將IDD中之azetidine-2,4-dione 官能基與一級胺 (diethylenetriamine;DETA) 開環反應形成 malonamide 鍵結 (G1),反覆進行加成與開環步驟可得到高代數之雙并型末端官能基樹枝狀分子,將各代數之樹枝狀分子進行結構鑑定。整數代 (G1、G2、G3) 之樹枝狀分子以離子交換方式導入蒙脫土層板間形成有機黏土的奈米複合材料,其層間距分別為57 Å、脫層、以及脫層狀態。再將有機黏土奈米複合材料與高熱性質、高成膜性之聚亞醯胺以10 wt%、20 wt%進行物理混摻,形成具有自組裝排列行為的奈米複合材料,並利用solvent casting方式製備具非中心對稱排列之光學薄膜。利用樹枝狀結構以及導入具有阻隔效應的團基長碳鏈,隨著代數成長具有明顯之阻隔效應 (site-isolation effect) 之因素,於高代數、高濃度之奈米複材下,減少聚集現象的產生,增加其非線性光學係數以及良好成膜等特性。 結果發現導入十八長碳鏈 ( stearyl-group )團基在樹枝狀分子結構中,能有效強化阻隔效應(site-isolation effect),因此可以達到較佳之光電性質表現。 為了比較不同構築單元IDD以及1-(4-isocyanatophenyl)-3,3-dimethylazetidine-2,4-dione (IPDA)在相同代數末端具有雙并型末端官能基之結構差異性,進一步進行合成以及探討之間光電性。
In this study, a bifunctional building block compound,4-isocyanato- 4’(3,3-dimethylazetidine-2,4-dione)diphenylmethane (IDD) was used as a building block to synthesize a series of novel polyurethane/malonamide dendrons with two alternating peripheral functional groups (azobenzene chromophore and stearyl group) via a convergent route. All of the dendrons (G1, G2, G3,) exhibited structural characteristics with secondary amines located on one end. With this feature, the amine salt was easily formed by the addition of hydrochloric acid. Subsequently, the amine salt proceeded to ion-exchange with Na+-MMT. By respective incorporation of the different generations of dendrons onto layered MMT, the interlayer distance of the intercalated hybrid could be precisely controlled to form a unique structure with the possibility of self-assembly. These dendrons (G1、G2 and G3) with peripheral chromophore-atlternating-stearyl group were utilized to intercalate layered silicates, resulting in a large d-spacings of 57Å or exfoliation morphology. After blending the organoclays with a high glass transition temperature (Tg) polyimide (Tg, 271 oC), respectively, the interactions between the hydrogen bond-rich dendrons and polyimide in the layered confinement resulted in ordered morphology, i.e. optical nonlinearity. Furthermore,we also synthesized a rather rigid building block, 1-(4-isocyanatophenyl)-3,3-dimethylazetidine-2,4-dione (IPDA) for the sake of comparison
URI: http://hdl.handle.net/11455/3854
其他識別: U0005-0208201110304400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201110304400
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.