Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3855
標題: 反應型水性聚胺酯及其奈米複材研究
Preparation and characterization of waterborne polyurethanes with reactive functional groups and their corresponding nanocomposites
作者: 蕭世明
Shau, Shi-Min
關鍵字: 水性聚胺酯
waterborne polyurethane
奈米複材
內交聯
蒙脫土
水滑石
脫層化
nanocomposite
inner-cross-linked
montmorillonite
layered double hydroxide
exfoliation
出版社: 化學工程學系所
引用: (1)Szycher’s handbook of polyurethanes, Szycher, M. CRC press LLC, 1999. (2)張立德、牟季美. 奈米材料和奈米結構, 科學出版社, 2000. (3)工研院化工所. 奈米化學與科技應用, 2004. (4)LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Prog. Polym. Sci. 1999, 15, 11. (5)Alexandre, M. ; Philippe Dubois, P. Mater. Sci. Eng. 2000, 28, 1. (6)蔡宗燕. 化工資訊, 第2期, 1998. (7)Cooper, S. L.; Tobolsky, A. V. J. Appl. Polym. Sci. 1966, 10, 1837. (8)Desai, S.; Thakore, I. M.; Sarawade, B. D.; Devi, S. Euro. Polym. J. 2000, 36, 711. (9)Wang, C. B.; Cooper, S. L. Macromolecules 1983, 16, 775. (10)Miller, J. A.; Lin, S. B.; Hwang, K. S.; Wu, K. S.; Gibson, P. E.; Cooper, S. L. Macromolecules 1985, 18, 32. (11)Król, P. Prog. Polym. Sci. 2007, 52, 915. (12)Fengkui, L.; Jinan, H; Wei, Z.; Xian, Z.; Mao, X.; Xiaolie, L.; Dezhu, M,; Byung, K. K. J. Appl. Polym. Sci. 1996, 62, 631 (13)Aitken R. R.; Jeffs, G. M. F. Polymer 1997, 18, 197. (14)Georgoussis, G.; Kyritsis, A. Eur. Polym. J. 1999, 35, 2007. (15)Hsieh, T. T.; Hsieh, K. H.; Simon, G. P.; Tiu, C.; Hsu, H. P. J. Polym. Res. 1998, 5, 153 (16)Seymour, R. W.; Allegrezza, A. E.; Cooper, S. L. Macromolecules 1973, 6, 897. (17)Koberstein, J. T.; Russell, T. P. Macromolecules 1986, 19, 714. (18)Seymour, P. W.; Cooper, S. L. Macromolecules 1973, 6, 48. (19)Leung , L. M.; Kobberstein, J. T. Macromolecules 1986, 19, 706. (20)Abouzahr, S.; Wilkes, G. L.; Ophir, Z. Polymer 1982, 23, 1077. (21)Chattopadhyay, D. K.; Webster, D. C. Prog. Polym. Sci. 2009, 34, 1068. (22)Petrovic, Z. S.; Zavagro, Z.; Flynn, J. H.; Macknight, W. J. J. Appl. Polym. Sci. 1994, 51, 1087. (23)Chattopadhyay, D. K.; Raju, K. V. S. N. Prog. Polym. Sci. 2007, 32, 352. (24)Ramesh, S.; Tharanikkarasu, K.; Mahesh, G. N.; Radhakrishnan, G. Polym. Rev. 1998, 38, 481. (25)陳幹男. 工程科技通訊, 第七十二期, 120~124頁. (26)Cheong, I. W.; Kong, H. C.; An, J. H.; Kim, J. H. J. Polym. Sci, Part A: Polym. Chem. 2004, 42, 4353. (27)Kim, J. H.; Cheong, I. W.; Ahn, K. M. US Patent 7,193,011, 2007. (28)Lu, M. G.; Lee, J. Y.; Shim, M. J.; Kim, S. W. J. Appl. Polym. Sci. 2002, 86, 3461. (29)Wang, K.; Peng, Y.; Tong, R.; Wang, Y.; Wu, Z. J. Appl. Polym. Sci. 2010, 118, 920. (30)Kwak, Y. S.; Park, S. W.; Kim, H. D. Colloid Polym. Sci. 2003, 281, 957. (31)LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl. Clay Sci. 1999, 15, 11. (32)Tsai, T. Y.; Li, C. H.; Chang, C. H.; Cheng, W. S; Hwang, C. L.; Wu, R. J. Adv. Mater. 2005, 17, 1769. (33)Goh, K. H.; Lim, T. T.; Dong, Z. Water Res. 2008, 42, 1343. (34)Williams, G. R.; O’Hare, D. J. Mater. Chem. 2006, 16, 3065. (35)Li, F.; Duan, X. Struct. Bond. 2006, 119, 193. (36)Khan, A. I.; O’Hare, D. J. Mater. Chem. 2002, 12, 3191. (37)Prévot, V.; Claude Forano, C.; Besse, J. P. Appl. Clay Sci. 2001, 18, 3. (38)Meyn, M.; Beneke, K.; Lagaly, G. Inorg. Chem. 1990, 29, 5201. (39)Wang, L.; Su, S.; Chen, D.; Wilkie, C. A. Polym. Degrad. Stab. 2009, 94, 770. (40)Chen, D.; Wilkie, C. A. Polym. Degrad. Stab. 2009, 94, 1110. (41)Nyambo, C.; Chen, D.; Su, S.; Wilkie, C. A. Polym. Degrad. Stab. 2009, 94, 1298. (42)Iyi, N.; Kurashima, K.; Fujita, T. Chem. Mater. 2002, 14, 583. (43)Leroux, F.; Besse, J. P. Chem. Mater. 2001, 13, 3507. (44)Usuki, A.; Hasegawa, N.; Kato, M. Adv. Polym. Sci. 2005, 179, 135. (45)Okada, A.; Usuki, A. Macromol. Mater. Eng. 2006, 291, 1449. (46)Liu, P. Appl. Clay Sci. 2007, 38, 64. (47)Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1179. (48)Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Polym. Sci., Polym. Chem. 1993, 31, 1755. (49)http://www.nanocor.com.cn/nanocorpatent.htm (50)Lan, T.; Kaviratn, P. D.; Pinnavaia T. J. Chem. Mater. 1995, 7, 2144. (51)Park, J. H.; Jana, S. C. Macromolecules 2003, 36, 2758. (52)Okada, A.; Usuki, A. Macromol. Mater. Eng. 2006, 291, 1449. (53)Pattanayak, A.; Jana, S. C. Polymer 2005, 46, 5183. (54)Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187. (55)Lin, J. J.; Chen, I. J.; Chou, C. C. Macromol. Rapid Commun. 2003, 24, 492. (56)Xia, H.; Song, M. Polym. Int. 2006, 55, 229. (57)Wagener, R.; Reisinger, T. J. G. Polymer 2003, 44, 7513. (58)Jhon, Y.K.; Cheong, I.W.; Kim, J.H. Colloid Surf A: Physicochem. Eng. Aspects. 2001, 179, 71. (59)Nanda, A. K.; Wicks, D. A. Polymer 2006, 47, 1805. (60)Wang, L.; Shen, Y.; Lai, X.; Li, Z.; Liu, M. J. Polym. Res. 2011, 18, 469. (61)Liu, F.; Dong Han, D. J. Appl. Polym. Sci. 2011, 121, 1536. (62)Negim, S. M.; Bahruddin, S.; Mahyuddin, R.; Idiris, M. S. J. Appl. Polym. Sci. 2011, 121, 8. (63)Goering H, Krüger H, Bauer M. Macromol. Mater. Eng. 2000, 278, 23. (64)Pattanayak, A.; Sadhan C.; Jana, S. C. Polymer 2005, 46, 3275. (65)Pattanayak, A.; Sadhan C.; Jana, S. C. Polymer 2005, 46, 3394. (66)Pattanayak, A.; Sadhan C.; Jana, S. C. Polymer 2005, 46, 5183. (67)Chen, T. K.; Tien, Y. I.; Wei, K. H. Polymer 2000, 41, 1345. (68)Cao, F.; Jana, S. C. Polymer 2007, 48, 3790. (69)Tien, Y. I.; Wei, K. H. Macromolecules 2001, 34, 9045. (70)Tien, Y. I.; Wei, K. H. Polymer 2001, 42, 3213. (71)Moon, S. Y.; Kim, J. K.; Nah, C.; Lee, Y. S. Eur. Polym. J. 2004, 40, 1615. (72)Kuan, H. C.; Ma, C. C. M.; Chang, W. P.; Yuen, S. M.; Wu, H. H.; Lee, T. M. Compos. Sci. Technol. 2005, 65, 1703. (73)Lee, H. T.; Lin, L. H. Macromolecules 2006, 39, 6133. (74)Lee, H. T.; Hwang, J. J.; Liu, H. J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5801. (75)Staudinger, H.; Göhring, O.; Schöller, M., Chem. Ber. 1914, 47, 40. (76)Ebnöther, A.; Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; R. Süess, A. V., Helv. Chim. Acta 1959, 42, 918. (77)Poshkus, A. C.; Herweh, J. E., J. Org. Chem. 1965, 30, 2466. (78)Martin, J. C.; Burpitt, R. D.; Gott, P. G.; Harris, M.; Meen, R. H., J. Org. Chem. 1971, 36, 2205. (79)Imai, Y.; Hirukawa, H., Polym. J. 1973, 4, 93. (80)Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J.; Su, W. C.; Jeng, R. J., J. Appl. Polym. Sci. 2007, 103, 3591. (81)Chen, C. P.; Dai, S. A.; Chang, H.-L.; Su, W. C.; Jeng, R. J., J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 682. (82)Tsai, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. J. Mater. Chem. 2006, 16, 2056. (83)Juang, T. Y.; Tsai, C. C.; Wu, T. M.; Dai, S. A.; Chen, C. P.; Lin, J. J.; Liu Y. L.; Jeng, R. J. Nanotechnology, 2007, 18, 205606. (84)蔡政哲. 國立中興大學化學工程學系博士論文, 2008. (85)陳永忠. 國立中興大學化學工程學系博士論文, 2009. (86)Chen, Y. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Lin, J. J.; Jeng, R. J. Macromol. Rapid Commun., 2008, 29, 587. (87)Chen, Y. C.; Juang, T. Y.; Wu, T. M.; Dai, S. A.; Kuo, W. J; Liu, Y. L.; Chen, F. M. C.; Jeng, R. J. ACS Appl. Mater. Interfaces 2009, 1, 2371. (88)Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J. Polymer, 2005, 46, 11849. (89)Dai, S. A.; Chen, C. P.; Lin, C. C.; Chang, C. C.; Wu, T. M.; Su, W. C.; Chang, H. L.; Jeng, R. J. Macromol. Mater. Eng., 2006, 291, 395. (90)Tsai, C. C.; Chang, C. C.; Yu, C. S.; Dai, S. A.; Wu, T. M.; Su, W. C.; Chen, C. N.; Chen, F. M. C.; Jeng, R. J. J. Mater. Chem., 2009, 19, 8484. (91)Kuo, M. C.; Jeng, R. J.; Su, W. C.; Dai, S. A. Macromolecules, 2008, 41, 682. (92)Chang, H. L.; Chao, T. Y.; Yang, C. C.; Dai, S. A.; Jeng, R. J. Eur. Polym. J. 2007, 43, 3988. (93)Kuo, M. C.;. Tung, Y. C.; Yeh, C. L.; Chang, H. Y.; Jeng, R. J.; Dai, S. A. Macromolecules, 2008, 41, 9637. (94)Ting, W. H.; Chen, C. C.; Dai, S. A.; Suen, S. Y.; Yang, I. K.; Liu, Y. L.; Chen, F. M. C.; Jeng, R. J. J. Mater. Chem., 2009, 19, 4819. (95)C. C. Chang, C. C.; Juang, T. Y.; Ting, W. H.; Lin, M. S.; Yeh, C. M.; Dai, S. A.; Suen, S. Y.; Liu, Y. L.; Jeng, R. J. Mater. Chem. Phys. 2011, 128, 157. (96)Liu, J. K.; Shau, S. M.; Juang, T. Y.; Chang, C. C.; Dai, S. A.; Su, W. C.; Lin, C. H.; Jeng, R. J. J. Appl. Polym. Sci. 2011, 120, 2411. (97)Juang, T. Y.; Liu, J. K.; Chang, C. C.; Shau, S. M.; Tsai, M. H.; Dai, S. A.; Su, W. C.; Lin, C. H.; Jeng, R. J. J. Polym. Res. 2011, 18, 1169. (98)http://en.wikipedia.org/wiki/Zeta_potential. (99)Lin, J. J.; Juang, T. Y. Polymer, 2004, 45, 7887. (100)Chan, Y. N.; Juang, T. Y.; Liao, Y. L.; Dai, S. A.; Lin, J. J. Polymer, 2008, 49, 4796. (101)張阿松. 國立中興大學化學工程學系碩士論文, 2007. (102)http://en.wikipedia.org/wiki/Critical_micelle_concentration. (103)Kim, B. K.; Yanf, J. S.; Yoo, S. M.; Lee, J. S. Colloid Polym. Sci. 2003, 281, 461. (104)Chattopadhyay, D. K.; Sreedhar, B.; Raju, K. V. S. N. Polymer 2006, 47, 3814. (105)Chiu, H. T.; Huang, Y. C.; Chiang, C. H. J. Appl. Polym. Sci. 2007, 106, 849. (106)Chiu, H. T.; Huang, Y. C. Colloid Polym. Sci. 2007, 285, 1331. (107)Park, S. H.; Chung, I . D.; Hartwig, A.; Kim, B. K. Colloid Surf A: Physicochem. Eng. Aspects. 2007, 305, 126. (108)Ayres, E.; Oréfice, R. L.; Yoshida, M. I. Euro. Polym. J. 2007, 43, 3510. (109)Kim, B. S.; Kim, B. K. J. Appl. Polym. Sci. 2005, 97, 1961. (110)Chapman, T. M. J. Polym. Sci, Part A: Polym. Chem. 1989, 27, 1993. (111)Xia, H.; Shaw, S. J.; Song, M. Polym. Int. 2005, 54, 1392. (112)Caraculacu, A. A.; Coseris, S. Prog. Polym. Sci. 2001, 26, 799. (113)Jan, I. N.; Lee, T. M.; Chiou, K. C.; Lin, J. J. Ind. Eng. Chem. Res. 2005, 44, 2086. (114)Chen, B.; Evans, J. R. G.; Greenwell, H. C.; Boulet, P.; Coveney, P. V.; Bowden, A. A.; Whiting, A. Chem. Soc. Rev. 2008, 37, 568. (115)Subramani, S; Lee, J. M.; Kim, J. H.; Cheong, I. W. Macromol. Res. 2005, 13, 418. (116)Kim, B. K.; Seo, J. W.; Jeong, H. M. Eur. Polym. J. 2003, 39, 85. (117)Subramani, S.; Lee, J-Y.; Cheong, I. W.; Kim, J. H. Comp. Sci. Technol. 2007, 67, 1561. (118)Subramani, S.; Choi, S-W.; Lee, J-Y.; Kim, J. H. Polymer 2007, 48, 4691. (119)Lu, Y.; Kong, S-T.; Deiseroth, H-J.; Mormann, W. Macromol. Mater. Eng. 2008, 293, 900. (120)Kwak, Y. S.; Kim, E. Y.; Kim, H. D.; Lee, J. B. Colloid. Polym. Sci. 2005, 283, 880. (121)Dang, X.; Wang, G.; Wang, D.; Pan, T.; Zhou, L.; Shi, X. J. Appl. Polym. Sci. 2007, 103, 634. (122)Lee, B. S.; Chun, B. C.; Chung, Y. C.; Sul, K. I.; Cho, J. W. Macromolecules, 2001, 34, 6431. (123)Yen, M. S.; Tsai, H. C.; Hong, P. D. J. Appl. Polym. Sci. 2006, 100, 2963. (124)Otts, D. B.; Pereira, K. J.; Jarret, W. L.; Urban, M. W. Polymer 2005, 46, 4776.
摘要: 本論文研究以4-isocyanato-4′(3,3-dimethyl-2,4-dioxo-azetidino) diphenyl methane (IDD)為起始單體,利用IDD一端為具反應性的isocyanate官能基和一端具反應選擇性的azetidine-2,4-dione官能基之特性,製備出多官能基反應型小分子雙醇單體。透過配方與分子設計,將此反應型小分子雙醇導入聚胺酯結構中,製備不同結構特性之水性化聚胺酯材料。此具有反應性azetidine-2,4-diones側基之小分子雙醇可作為聚胺酯之鏈延伸劑、賦予結構上可架橋交聯之側基、三級胺橋接鏈結可作為層狀黏土之改質劑,可利用in situ分子量成長或分子間親疏水特性,達到黏土層間無序脫層化分散效果,達到物性強化之功能。 研究第一部分針對反應型小分子雙醇導入水性化聚胺酯進行探討。製備傳統線性、硬鏈段側基與內交聯化等三系列之水性化聚胺酯。透過配方比例之變化,比較其膠體狀態之差異與分散安定特性;經乾燥成膜後,透過FT-IR及UV-vis量測其薄膜之官能基特性吸收變化,因為導入交聯化與硬鏈段結構,提昇了薄膜之耐熱性、機械性質、耐水解性及微相分離等,並降低了整體之吸水率及結晶性;透過DSC、XRD、AFM和POM等觀察其微相分離差異性,探討配方組成、分子構形與微相分離之相關性。 第二部分則透過結構上可中和化之三級胺之橋接鏈結,作為層狀黏土之改質劑,經改質化之二維層狀黏土可有效導入分散於水性聚胺酯樹脂中,利用in situ分子量成長或分子間親疏水特性,達到黏土之脫層化分散效果,透過小分子胺鏈延伸同時開環化交聯,達到有機/無機混成效果並提升整體薄膜物性。結果顯示,有機黏土於NMP中分散性較佳,黏土之分散性與聚縮合黏度有關;導入MDI單體不但使物性增強,體系黏度與剪切力亦相對增高,能有效使黏土脫層且分散。隨黏土與MDI單體之導入,水性聚胺酯膠體之分散粒徑增大、zeta電位值降低,當含量> 3wt%後開始產生不安定性。因黏土層狀堆疊的結構,使得其聚合分子量下降。此外,具有azetidine-2,4-dione官能基之有機化黏土,可透過層間胺類反應性使層板再延伸化,透過分子量變化可控制無機層板之距離且呈線性變化關係。 第三部分則製備不同軟鏈段之陰離子型水性聚胺酯分散膠體,透過其直接插層人工合成層狀水滑石。探討不同軟鏈段結構及氫鍵作用力的變化對水滑石脫層化的作用影響。結果顯示,增加硬鏈段強度(MDI導入或氫鍵作用力增加)或降低軟鏈段結晶度能影響最終複合材料中水滑石之分散狀態;透過可分子自交聯化且富含氫鍵作用力之PMMF交聯劑導入,水滑石可有效達至脫層化,高結晶度之聚醇主體則會影響軟硬鏈段之平衡,相對降低了硬鏈段之氫鍵強度而失去與水滑石作用之效果,期望可透過此直接脫層化程序達到複合材料薄膜之製備及其進一步之利用。
In this study, novel diols comprising azetidine-2,4-dione group were synthesized from the coupling reaction of building block 4-isocyanato-4'' (3, 3-dimethyl-2, 4-dioxo-azetidino) diphenylmethane (IDD) and amine-containing diol. The multi-functional diols with reactive azetidine-2,4-dione functional group could be embedded into water-borne polyurethane (WPU) structure, serving as chain-extender, hard segment of WPU, crosslinking sites, and reactive modifier of montmorillonite (MMT). In part one, inner-cross-linked WPU dispersions with different crosslinking degrees were prepared by step polymerization and neutralized emulsification method. The introduction of hydroxyl group-containing 3-(4-(4-(3, 3-dimethyl-2, 4-dioxoazetidin-1-yl)benzyl)phenyl)-1, 1-bis(2-hydroxyethyl)urea (DEA-diol) with pendent azetidine-2,4-dione group provided cross-linkable sites and was then utilized for inner-cross-linking during the chain-extension step. The reaction behavior, chemical structure and free/residual NCO-groups at various reaction steps were monitored by Fourier transform infrared spectroscopy (FT-IR). The inner-cross-linked WPU dispersions presented small particle sizes and high stability. Water uptake property, hydrolytic stability, thermal property, mechanical property, and phase-separation morphology were enhanced via inner-crosslinking as compared to the conventional linear-type and side-chain hard-segment-type WPUs. Furthermore, microphase morphology was investigated by optical microscope, atomic force microscopy (AFM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). In part two, by simple acidification of the tertiary amine upon 1-(3-(bis(2-hydroxyethyl)amino)propyl)-3-(4-(4-(3,3-dimethyl-2,4-dioxoazetidin-1-yl)benzyl)phenyl)urea (APDEA-diol) monomer and subsequent ion-exchange with Na+-MMT, the interlayer d-spacing could be enlarged to >30 Å. The gallery-expansion of organoclay behavior was studied by varying the addition procedure, molar ratio and molar mass of the extended diamine compound. In the silicate confinement, linear relationship between the observed XRD d-spacing and total molar mass were obtained. In addition, the incorporation of an extended diamine (D-2000) brought about a wide interlayer distance >50 Å, which rendered the MMTs dispersible in NMP rather than acetone and MEK. This indicates that the dispersibility of organoclay was affected by the presence of hydrophilic co-solvent during the reaction period while preparing clay/WPU nanocomposites. The modified organoclay was further utilized to prepare clay/WPU dispersions and their corresponding nanocomposites. Both XRD data and transmission electron microscopy (TEM) images of clay/WPU nanocomposites indicate that the MMTs were exfoliated in the polymer matrices. The nanocomposites showed significant enhancement in the storage and loss modulus when compared to the neat WPU sample. The maximum enhancement was reached for the sample with 3 wt % clay. The clay/WPU dispersion with higher clay content (> 3 wt%) exhibited a larger average particle size and a less negative zeta potential. Gel permeation chromatography (GPC) results indicated that the molecular weight decreased as the clay content increased. In addition, the incorporation of clay was also capable of enhancing the thermal resistance and tensile strength of WPUs, but not elongation. AFM microphotographs showed that the surface of nanocomposites was very smooth. Yet, phase-separation was increased with increasing clay content. Finally, WPU nanocomposites reinforced by Mg-Al layered double hydroxides (LDHs) were also developed via directly intercalation process. Anionic WPUs based on aliphatic and aromatic isocyanates were composed of dimethylol-propionic acid, different backbone polyols with a molecular weight of 2000 and diisocyanate. The usage of polyether polyols or polyester polyols would bring about tunable hydrophilicity and degree of crystallization. Apart from that, anionic LDHs could be directly intercalated by the prepared WPU colloids, revealing the exfoliation behavior. The exfoliation of layered structure in WPU was determined by XRD and subsequently confirmed by TEM. The introduction of the rigid aromatic 4, 4''-methylenedi-p-phenyl diisocyanate (MDI), polyether side chains or hydrogen bonding-rich crosslinkers would effectively influence intermolecular force and molecular assembling in the organic-inorganic interfaces. Tensile properties and high temperature moduli increased upon increasing the content of LDHs. The driving force rendered the layered structure into randomization between LDHs and WPU involving the factors of hydrogen bonding strength, crystallinity of the polyols, and hydrophilicity of WPU particles was investigated. The direct intercalation process using WPU colloids provides a new route for preparing LDHs-exfoliated nanocomposites. Moreover, this inner-cross-linked WPU and nanocomposite studies are potentially useful for further applications such as shap-memory polyurethane.
URI: http://hdl.handle.net/11455/3855
其他識別: U0005-0301201217244800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0301201217244800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.