Please use this identifier to cite or link to this item:
標題: 銅-氧化鋯觸媒擔持於鏑-鋁混合氧化物之製備及其用於甲醇蒸氣重組產氫之研究
Preparation of Copper-Zirconia Catalyst Supported on Dysprosium-Aluminum Mixed Oxides for Hydrogen Production by Methanol Steam Reforming
作者: 高楚昀
Kao, Chu-Yun
關鍵字: steam reforming of methanol
copper catalysts
dysprosium oxide
chemical reduction method
出版社: 化學工程學系所
引用: 參考文獻 1. N. Iwasa﹐T. Mayanagi﹐W. Nomura﹐M. Arai﹐N. Takezawa﹐“Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol”﹐Applied Catalysis A:General 248 (2003) 153-160. 2. H. Lorenz﹐W. Jochum﹐B. Klötzer﹐M. S-Pollach﹐S. Schwarz﹐K. Pfaller﹐S. Penner﹐“Novel methanol steam reforming activity and selectivity of pure In2O3”﹐Applied Catalysis A:General 347 (2008) 34-42. 3. H. Lorenz﹐S. Penner﹐W. Jochum﹐C. Rameshan﹐B. Klötzer﹐“Pd/Ga2O3 methanol steam reforming catalysts:Part II. Catalytic selectivity”﹐Applied Cataly A:General 358 (2009) 203-210. 4. H. Lorenz﹐S. Turner﹐O. I. Lebedev﹐G. V. Tendeloo﹐B. Klötzer﹐C. Rameshan﹐K. Pfaller﹐S. Penner﹐“Pd-In2O3 interaction due to reduction in hydrogen:Consequences for methanol steam reforming”﹐Applied Catalysis A:General 374 (2010) 180-188. 5. D. R. Mullins﹐“Adsorption of CO and C2H4 on Rh-loaded thin-film dysprosium oxide”﹐Surface Science 600 (2006) 2718-2725. 6. M. Tang﹐J. A. Valdez﹐P. Lu﹐G. E. Gosnell﹐C. J. Wetteland﹐K. E. Sickafus﹐“A cubic-to-monoclinic structural transformation in the sesquioxide Dy2O3 induced by ion irradiation”﹐Journal of Nuclear Materials 328 (2004) 71-76. 7. 林伸茂﹐直接甲醇燃料電池原理、應用與實作﹐旗標出版股份有限公司. 2006. 8. 黃鎮江, 燃料電池﹐全華科技圖書股份有限公司. 2005. 9. 王世敏、許祖勛、傅晶﹐奈米材料原理與製備﹐五南圖書出版股份有限公司. 2004. 10. 徐國財、張立德﹐奈米複合材料五南圖書出版股份有限公司.2003. 11. E. D. Guerreiro﹐O. F. Gorriz﹐G. Larsen﹐L. A. Arrúa﹐“Cu/SiO2 catalysts for methanol to methyl formaye dehydrogenation A comparative study using different preparation techniques”﹐Applied Catalysis A:General 204 (2000) 33-48. 12. C. Z. Yao﹐L. C. Wang﹐Y. M. Liu﹐G. S. Wu﹐Y. Cao﹐W. L. Dai﹐H. Y. He﹐K. N. Fan﹐“Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts”﹐Applied Catalysis A:General 297 (2006) 151-158. 13. 陳慧英﹐溶膠凝膠法在薄膜製備上之應用”﹐化工技術﹐無機薄膜之製備與應用專輯﹐11月號﹐第80期﹐1999. 14. R. D. Gonzalez, T. Lopez, R. Gomez,“Sol-Gel preparation of supported metal catalysts”, Catalysis Today 35 (1997) 293-317. 15. A. C. Voegtlin﹐A. Matijasic﹐J. Patarin﹐C. Sauerland﹐Y. Grillet﹐ L. Huve﹐“Room-temperature synthesis of silicate mesoporous MCM-41-type materials:influence of the synthesis pH on the porosity of the materials obtained”﹐Microporous Materials 10 (1997) 137-147. 16. G. D. Forster﹐L. F. Barquín﹐N. S. Cohen﹐Q. A. Pankhurst﹐I. P. Parkin﹐“Preparation of Fe-Zr-B amorphous alloys by chemical reduction”﹐Journal of Materials Processing Technology 92-93 (1999) 525-528. 17. A. M. Venezia, A. Rossi, D. Duca, A. Martorana, G. Deganello,“Particle size and metal-support interaction effects in pumice supported palladium catalysts”, Applied Catalysis A: General 125 (1995) 113-128. 18. A. Gil, A. Díaz, L.M. Gandía, M. Montes,“Influence of the preparation method and the nature of the support on the stability of nickel catalysts”, Applied Catalysis A: General 109 (1994) 167-179. 19. Mile, B. D. Stirling, M. A. Zammitt, A. Lovell, M. Webb,“The Location of Nickely Oxide and Nickel in Silica-supported Catalysts:Two Forms of NiO and the assignment of Temperature Programmed Reduction Profiles”, J. Catal. 114 (1988) 217. 20. V. D. Oetelaar, L. C. A., A. Partridge, P. J. A. Stapel, C. F. J. Flipse, H. H. Brongersma,“A Surface Science Study of Model Catalysts. 1.Quantitative Surface Analysis of Wet-Chemically Prepared Cu/SiO2 Model Catalysts”, J. Phys. Chem. B 102 (1998) 9532. 21. F. Boccuzzi﹐A. Chiorino﹐M. Manzoli﹐D. Andreeva﹐T. Tabakova﹐L. Ilieva﹐V. Iadakiev﹐“Gold﹐silver and copper catalysts supported on TiO2 for pure hydrogen production”﹐Catalysis Taday 75 (2002) 169-175. 22. I. Eswaramoorthi﹐V. Sundaramurthy﹐A. K. Dalai﹐“Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts”﹐Applied Catalysis A:General 313 (2006) 22-34. 23. A. Kulprathipanja, J. L. Falconer, “Partial oxidation of methanol for hydrogen production using ITO/Al2O3 nanoparticle catalysts”﹐ Applied Catalysis A: General 261 (2004) 77-86. 24. L. Alejo﹐R. Lago﹐M. A. Peña﹐J. L. G. Fierro﹐“Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”﹐Applied Catalysisi A:General 162 (1997) 281-297. 25. S. Velu﹐K. Suzuki﹐M. P. Kapoor﹐F. Ohashi﹐T. Osaki﹐“Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts” ﹐Applied Catalysis A:General 213 (2001) 47-63. 26. S. Velu﹐K. Suzuki﹐M. Okazaki﹐M. P. Kapoor﹐T. Osaki﹐F. Ohashi﹐“Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fule Cell:Catalyst Characterization and Performance Evaluation” ﹐Journal of Catalysis 194 (2000) 373-384. 27. T. L. Reitz﹐S. Ahmed﹐M. Krumpelt﹐R. Kumar﹐H. H. Kung﹐“Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction” ﹐Journal of Molecular Catalysisi A:Chemical 162 (2000) 275-285. 28. W. Wiese﹐B. Emont﹐R. Peters﹐“Methanol steam reforming in a fuel cell drive system” ﹐Journal of Power Sources 84 (1999) 187-193. 29. N. Takezawa﹐N. Iwasa﹐“Steam reforming and dehydrogenation of methanol:Difference in the catalytic functions of copper and group VIII metals”﹐Catalysis Today 36 (1997) 45-56. 30. C. J. Jiang﹐D. L. Trimm﹐M. S. Wainwright﹐N. W. Cant﹐“Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst”﹐Applied Catalysis A:General 97 (1993) 145-158. 31. B. A. Peppley﹐J. C. Amphlett﹐L. M. Kearns﹐R. F. Mann﹐“Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1:the reaction network”﹐Applied Catalysis A:General 179 (1999) 21-29. 32. B. A. Peppley﹐J. C. Amphlett﹐L. M. Kearns﹐R. F. Mann﹐“Methanol-steam reforming on Cu/ZnO/Al2O3 catalyst. Part 2:A comprehensive kinetic model”﹐Applied Catalysis A:General 179 (1999) 31-49. 33. B. Frank﹐F. C. Jentoft﹐H. Soerijanto﹐J. Kröhnert﹐R. Schlögl﹐R. Schomäcker﹐“Steam reforming of methanol over copper-containing catalysts:Influence of support material on microkinetics” ﹐Journal of Catalysis 246 (2007) 177-192. 34. J. P. Breen﹐J. R. H. Ross﹐“Methanol reforming for fuel-cell applications:development of zirconia-containing Cu-Zn-Al catalysts”﹐Catalysis Today 51 (1999) 521-533. 35. B. Lindström﹐L. J. Pettersson﹐“Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”﹐International Journal of Hydrogen Energy 26 (2001) 923-933. 36. X. Zhang﹐P. Shi﹐“Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts”﹐Journal of Molecular Catalysis A:Chemical 194 (2003) 99-105. 37. H. Oguchi﹐T. Nishiguchi﹐T. Matsumoto﹐H. Kanai﹐K. Utani﹐Y. Matsumura﹐S. Imamura﹐“Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts”﹐Applied Catalysis A:General 281 (2005) 69-73. 38. J. Papavasiliou﹐G. Avgouropoulos﹐T. Ioannides﹐“Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming”﹐Applied Catalysis B:Environmental 69 (2007) 226-234. 39. P. Clancy﹐J. P. Breen﹐J. R. H. Ross﹐“The preparation and properties of coprecipitated Cu-Zr-Y and Cu-Zr-La catalysts used for the steam reforming of methanol”﹐Catalysis Today 127 (2007) 291-294. 40. H. M. Yang﹐M. K. Chan﹐“Steam reforming of methanol over copper-yttria catalyst supported on praseodymium-aluminum mixed oxides”﹐Catal. Commun. (2011)﹐doi:10.1016/j.catcom.2011.05.022. 41. T. J. Huang﹐S. Y. Jhao﹐“Ni-Cu/samaria-doped ceria catalysts for steam reforming of methane in the presence of carbon dioxide”﹐ Applied Catalysis A:General 302 (2006) 325-332. 42. H. M. Yang﹐P. H. Liao﹐“Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol”﹐ Applied Catalysis A:General 317 (2007) 226-233. 43. P. H. Liao﹐H. M. Yang﹐“Preparation of Catalyst Ni-Cu/CNTs by Chemical Reduction with Formaldehyde for Steam Reforming of Methanol”﹐Catal Lett 121 (2008) 274-282. 44. C. Yang﹐J. Ren﹐Y. Sun﹐“Synergistic promotion of CeO2 and La2O3 in Pd/Al2O3 catalysts for methanol decomposition”﹐Catalysis Communications 2 (2001) 353-356. 45. Y. Suwa﹐S-I. Ito﹐S. Kameoka﹐K. Tomishige﹐K. Kunimori﹐“Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol”﹐ Applied Catalysis A:General 267 (2004) 9-16. 46. S. Liu﹐K. Takahashi﹐K. Uematsu﹐M. Ayabe﹐“Hydrogen production by oxidative methanol reforming on Pd/ZnO”﹐Applied Catalysis A:General 283 (2005) 125-135. 47. S. Liu﹐K. Takahashi﹐K. Uematsu﹐M. Ayabe﹐“Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:effects of the addition of a third metal component”﹐Applied Catalysis A:General 277 (2004) 265-270. 48. S. Liu﹐K. Takahashi﹐K. Fuchigami﹐K. Uematsu﹐“Hydrogen production by oxidative methanol reforming on Pd/ZnO:Catalyst deactivation”﹐Applied Catalysis A:General 299 (2006) 58-65. 49. S. Liu﹐K. Takahashi﹐H. Eguchi﹐K. Uematsu﹐“Hydrogen production by oxidative methanol reforming on Pd/ZnO:Catalyst preparation and supporting materials”﹐Catalysis Taday 129 (2007) 287-292. 50. S. Liu﹐K. Takahashi﹐ M. Ayabe﹐“Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:effects of Pd loading”﹐Catalysis Taday 87 (2003) 247-253. 51. 高濓、李蔚﹐奈米陶瓷﹐五南圖書出版股份有限公司.2003. 52. P. H. Matter﹐D. J. Braden﹐U. S. Ozkan﹐“Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”﹐Journal of Catalysis 223 (2004) 340-351. 53. L. C. Wang﹐Q. Lin﹐M. Chen﹐Y. M. Liu﹐Y. Cao﹐H. Y. He﹐K. N. Fan﹐“Structural Evolution and Catalytic Properties of Nanostructured Cu/ZrO2 Catalysts Prepared by Oxalate Gel-Coprecipitation Technique”﹐J. Phys. Chem. C 111 (2007) 16549-16557. 54. H. Oguchi﹐H. Kanai﹐K. Utani﹐Y. Matsumura﹐S. Imamura﹐“Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”﹐Applied Catalysis A:General 293 (2005) 64-70. 55. J. Agrell﹐H. Birgersson﹐M. Boutonnet﹐I. M. Cabrera﹐“Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”﹐Journal of Catalysis 219 (2003) 389-403. 56. A. Mastalir﹐B. Frank﹐A. Szizybalski﹐H. Soerijanto﹐A. Deshpande﹐M. Niederberger﹐R. Schomäcker﹐R. Schlögl﹐T. Ressler﹐“Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts:a kinetic study”﹐Journal of Catalysis 230 (2005) 464-475. 57. F. Arena﹐K. Barbera﹐G. Italiano﹐G. Bonura﹐L. Spadaro﹐F. Frusteri﹐“Synthesis﹐characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol”﹐ Journal of Catalysis 249 (2007) 185-194. 58. S. Patel﹐K. K. Pant﹐“Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol” ﹐Journal of Power Sources 159 (2006) 139-143. 59. S. Patel﹐K. K. Pant﹐“Influence of preparation method on preformance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”﹐J. Porous Mater. 13 (2006) 373-378.
摘要: 本論文研究目的為將活性金屬銅與氧化鋯擔持於鏑-鋁混合氧化物載體,將其應用於甲醇蒸氣重組反應。觸媒製備變數包含不同製備方法及煅燒溫度、不同促進劑、不同促進劑及活性銅含量、不同製備溶劑、不同前驅物溶液濃度、不同還原劑及分散劑、鏑-鋁混合氧化物比例,觸媒活性則以填充床反應器在水對甲醇莫耳比為1.3下於溫度200℃至400℃間測試。甲醇蒸汽重組反應變因包含不同水量與甲醇莫耳比、不同重量空間流速與觸媒穩定測試。 實驗結果顯示,利用沉澱與化學還原法製備觸媒反應比共沉澱法來的好,在Cu/Dy2O3 觸媒中添加10%不同促進劑(Zn、Sm、Ce、Zr) 皆能提升觸媒的分散性及活性,於280°C下大致都可提升5%的氫氣產率及降低CO濃度,其中以氧化鋯具有最佳的氫氣產率約92%。隨著促進劑氧化鋯含量的增加超過20%,過多的促進劑反而會包覆活性銅,使觸媒活性下降。製備觸媒過程中,溶液濃度對銅晶粒大小有明顯的影響,在低濃度時粒子間距過大,促進劑及分散劑效應減弱而使晶粒變大。此外,經由不同分散劑的添加都能有效使銅分散,提高觸媒表面積及催化活性。在載體中摻混氧化鋁,能提升催化效率,在穩定性測試結果中,Cu(25)/Dy2O3(75)觸媒於反應20小時活性下降為76%、Cu(25)ZrO2(10)/Dy2O3(65)觸媒於反應30小時仍維持在87%,而摻混氧化鋁之觸媒於100小時反應後氫氣產率僅下降約10%,最佳觸媒比例為Cu(25)ZrO2(10)/ [Dy2O3(75)-Al2O3(25)](65)。
In this dissertation, the purpose of this study is to prepare copper -zirconia catalyst supported on dysprosium-aluminum mixed oxides and to apply it on steam reforming of methanol. The catalysts were tested by packed-bed reactor between 200℃ to 400℃. The parameters of catalyst preparation include the different deposition methods and calcination temperature, ratios of promoter and copper to support, different solvents, concentration of precursor solution, types of reductant and dispersant, ratios of dysprosium-aluminum mixed oxides. Operating conditions in steam reforming of methanol included molar ratio of H2O/CH3OH, weight hourly space velocity, and stability of catalysts. The results revealed that the catalyst prepared by chemical reduction method is better than that prepared by co-precipitation method for this system. Doping of 10% amounts of metal oxide promoters (Zn, Sm, Ce, Zr) to the Cu/Dy2O3 catalyst enhanced the dispersion, activity of the catalyst and improved about 5% yield at 280°C. The catalyst added ZrO2 has the best hydrogen yield of about 92%. With the addition content of ZrO2 more than 20%, promoters would be too much and hide copper to decrease the activity of catalyst. Concentration of solution also significantly affect the copper of the grain size in the process of preparation of catalyst, because at low concentration distance between particles is larger, the effect of promoter and dispersant is weaker and lead larger grains. In addition, different dispersants can effectively improve the dispersion of copper and also improve the surface area and activity of the catalyst. Mixing the alumina in the support can improve the catalytic efficiency. In the stability test, the activity of Cu(25)/Dy2O3(75) catalyst remained 76% in the reaction of 20 hours, and the Cu(25)ZrO2(10)/Dy2O3(65) catalyst maintained at 87%. While the hydrogen yield of the catalyst added alumina almost decreased about 10% in the reaction of 100 hours, the best ratio of Cu(25)ZrO2(10)/[Dy2O3(75)-Al2O3(25)](65) catalyst.
其他識別: U0005-0407201116125400
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.