Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/38561
標題: PGASO: A synthetic biology tool for engineering a cellulolytic yeast
作者: Chang, Jui-Jen
Ho, Cheng-Yu
Ho, Feng-Ju
Tsai, Tsung-Yu
Ke, Huei-Mien
Wang, Christine H-T
Chen, Hsin-Liang
Shih, Ming-Che
Huang, Chieh-Chen
Li, Wen-Hsiung
關鍵字: Consolidated bioprocess
Synthetic biology
Yeast
Cellulolytic enzymes
Bio-ethanol
摘要: Background: To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a noncellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results: A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO), that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei ), a beta-glucosidase (from a cow rumen fungus), a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions: This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae . We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.
URI: http://hdl.handle.net/11455/38561
ISSN: 1754-6834
文章連結: http://dx.doi.org/10.1186/1754-6834-5-53
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.