Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3857
標題: 以溶膠凝膠法製備二氧化鈦擔持於奈米碳管之觸媒及其光催化活性之研究
Synthesis and Photocatalytic Activity of Titania Catalyst Supported on Carbon Nanotubes by Sol-Gel Method
作者: 陳冠璋
Chen, Kuan-Chang
關鍵字: photocatalytic reaction
光催化反應
photocatalyst
titania
carbon nanotubes
sol-gel method
光觸媒
二氧化鈦
奈米碳管
溶膠凝膠法
出版社: 化學工程學系所
引用: 1.E. M. Levin, H. F. McMurdie, "Phase diagrams for ceramists", The American Cermic Society, Inc., 76 (1975) 4150-4999. 2.L. Linsebigler, G. Lu, T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chemical reviews, 95 (1995) 735-758. 3.R. L. Penn, J. F. Banfield, “Formation of rutile nuclei atanatase twin interfaces and the phase transformation mechanismin nanocrystalline titania”, American Mineralogist, 84 (1999) 871-876. 4.K. B. Jeremy, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids:Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, Journal of American Chemical Society, 109 (1987) 3639-3646. 5.A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238 (1972) 37-38. 6.M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi M. Toyoda, “Preparation of stable anatase-type TiO2 and its photocatalytic performance”, International Journal of Inorganic Materials, 3 (2001) 809–811. 7.J. Yang, S. Mei, M. F. Rerreira, “Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition”, Journal of the American Ceramic Society, 83 (2000) 1361-1368. 8.J. C. Summers, S. A. Ausen, “Catalyst impregnation: Reactions of noble metal complexes with alumina”, Journal of Catalysis, 52 (1978) 445-452. 9.K. Tsukuma, T. Akiyama, H. Imai, “Liquid phase deposition film of tin oxide”, Journal of Non-Crystalline Solids, 210 (1997) 48-54. 10.A. L. Linsebigler, G. Lu, J. T.Yates, “ Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical reviews, 95 (1995) 735-758. 11.A. Mills, H. S. Le, “An overview of semiconductor photocatalysis” Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 1-35. 12.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez, “Characterization and photocatalytic activity in aqueous medium of TiO2and Ag-TiO2 coatings on quartz”, Applied Catalysis B-environmental, 13 (1997) 219-228. 13.W. Choi, A. Termin, M. Hoffmann, “The role of metal ion dopants in quantum-size TiO2: correlation between photoactivity and charge carrier recombination dynamics”, Journal of Physical Chemistry, 98 (1994) 13669-13679. 14.N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors”, Journal of Photochemistry and Photobiology A: Chemistry, 85 (1995) 247-255. 15.S Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354 (1991) 56-58. 16.S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter” , Nature, 363 (1993) 603-605. 17.D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls” Nature, 363 (1993) 605-607. 18.洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1 期,第23-30 頁,2002。 19.M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33 (1995) 883-891. 20.V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering, 43 (2004) 61-102. 21.R. W. Matthews, “Photooxidation of organic impurities in water using thin films of titanium dioxide”, Journal of Physical Chemistry, 91 (1987) 3328-3333. 22.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293 (2001) 269-271. 23.S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., “Efficient Photochemical WaterSplitting by a Chemically Modified n-TiO2” Science, 297 (2002) 22-43. 24.L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, “Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel ”, Applied Catalysis A: General, 308 ( 2006) 82-90. 25.W. G. Zhang, L. L. Zhang, Z. J. Jiang, R. Q. Li, X. J. Yang, X. Wang, L. D. Lua, “Synthetic route to the nano-sized titania with high photocatalyticactivity using a mixed structure-directing agent”, Materials Chemistry and Physics, 105 (2007) 414–418. 26.D. L. Liao, B. Q. Liao, “ Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants”, Journal of Photochemistry and Photobiology A: Chemistry, 187 (2007) 363–369. 27.A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, “ One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity” Applied Catalysis B: Environmental, 91 (2009) 397–405. 28.J. Tian, J. Wang, J. Dai, X. Wang, Y. Yin, “ N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange”, Surface and Coatings Technology, 204 (2009) 723–730. 29.C. C. Mao, H. S. Weng, “ Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange”, Chemical Engineering Journal, 155 (2009) 744–749. 30.C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, “Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes”, Journal of Hazardous Materials, 176 (2010) 807–813. 31.R. A. Spurr, W. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer”, Analytical Chemistry, 29 (1957) 760-762.
摘要: 本論文研究目的為將二氧化鈦擔持於奈米碳管載體表面,將其應用於光催化反應,觸媒製備變數包含不同煅燒溫度、碳管酸處理之變化、不同奈米碳管添加比例、不同正丙醇添加量、不同溶劑添加、不同碳管管徑、不同超音波功率製備,觸媒活性則以石英玻璃反應器在50 ppm甲基橙水溶液250 ml於150分鐘紫外光照射下進行反應測試。光催化反應變因包含不同初濃度之甲基橙水溶液、不同pH值甲基橙水溶液及不同波長光源進行光催化反應。 實驗結果顯示,利用溶膠凝膠法製備觸媒,當煅燒溫度為500℃時觸媒可以提高甲基橙水溶液之轉化率,於二氧化鈦中添加25%之奈米碳管之觸媒能夠有效提升觸媒的分散情況及反應活性,添加10-20 nm奈米碳管作為載體,提供高表面積,於150分鐘光催化反應,其轉化率可以達到43.5%。當以一百瓦之超音波功率進行合成觸媒,可以降低水解速率,降低二氧化鈦之晶粒尺寸,其晶粒尺寸為23.5 nm。 以超音波功率為一百瓦製備觸媒TiO2(75)/CNT(25),觸媒於進行光催化反應操作變因中,當波長為306 nm之光源進行光照反應,甲基橙轉化率可達到66.3%,速率常數值為商用觸媒之1.6倍,而當甲基橙水溶液pH值為4時亦有較佳的光催化活性。
In this dissertation, the purpose of this study is to prepare titania supported on carbon nanotubes(CNTs) and to apply it on photocatalytic reaction. The catalysts were tested by quartz glass reactor under the UV light illumination. The parameters of catalyst preparation include the different temperatures of calcinations, acid-treatment of carbon nanotubes, ratios of CNTs to titania, ratio of n-propanol of titanium n-butoxide, different solvents, different diameters of CNTs and different ultrasonic powers. Operating conditions in photocatalytic reaction included different initial concentrations of methyl orange solution, different pH value of methyl orange solution, and different wavelength illumination.. The results revealed that the catalyst prepared by sol-gel method, and calcinations of temperature at 500℃ enhanced the conversion of methyl orange solution. The amount of CNTs at 25% enhanced activity and dispersion of catalyst. Adding the 10-20 nm of CNTs for support can make catalyst obtain large surface. Under the UV light illumination, methyl orange solution converted 43.5%. The catalyst prepared by the ultrasonic that the power under 100W, the titaia crystal size about 23.5 nm. The catalyst of TiO2(75)/CNT(25) was used to proceed the photocatalytic reaction. Photodegradation of the methyl orange solution under irradiation of UV light (306 nm), the conversion of methyl orange solution was 66.3%, and the rate constant was 1.6 times commercial catalyst. When the pH value of methyl orange solution was 4, the photocatalyst had better photocatalytic activity.
URI: http://hdl.handle.net/11455/3857
其他識別: U0005-0407201116141000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407201116141000
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.