Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3858
標題: 以超音波輔助液-液相相間轉移觸媒在毛細管微反應器合成丙烯基苯基醚之研究
Synthesis of Allyl Phenyl Ether by Ultrasound-Assisted Liquid-Liquid Phase-Transfer Catalysis in Capillary Micro-reactor
作者: 楊聿喆
Yang, Yu-Che
關鍵字: Phase-transfer catalyst
相間轉移觸媒
sonochemistry
space time
capillary micro-reactor
allyl phenyl ether
liquid-liquid phase
超音波化學
滯留時間
毛細管微反應器
丙烯基苯基醚
液-液相系統
出版社: 化學工程學系所
引用: [1]P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalyst Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosophonium Salts” , J. Am. Chem. Soc. , Vol. 101, (1979)6606–6613 [2] A. W. Herriott, D. Picker, “Phase Transfer Catalysis. An Evaluation of Catalysts”, J. Am. Chem. Soc., 97, (1975) 2345 [3]C. J. Pederson, “Cyclic Polyethers and Their Complexes with Metal Salts, J. Am. Chem. Soc., 89, (1967a) 7071–7036 [4]楊鴻銘,相間轉移觸媒特論課程講義,中興大學 (2010) [5] M. Fedorynski, K. Wojciechowski, Z. Matacz, M. Makosa, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Phase Systems”, J. Org. Chem., 43 (24) , (1978) 4682 [6]C. Siswanto, T. Battal, O. E. Schuss, J. F. Rathman, “Synthesis of Alkylphenyl ethers in Aqueous Surfactant Solutions by Micellar Phase-Transfer Catalysis.1. Single phase systems”, Langmuir, 13, (1997) 6047 [7]T. Battal, C. Siswanto, O. E. Schuss, J. F. Rathman, “Synthesis of Alkylphenyl ethers in Aqueous Surfactant Solutions by Micellar Phase-Transfer Catalysis.2. Single phase systems”, Langmuir, 13, (1997) 6053 [8]G. D. Yadav, P. M. Bisht, “Fundamental analysis of microwave irradiated liquid–liquid phase transfer catalysis (MILL-PTC): Simultaneous measurement of rate and exchange equilibrium constants in selective O-alkylation of p-tert-butylphenol with benzyl chloride”, Journal of Molecular Catalysis A: Chemical 236 (2005) 54–64 [9]G. D. Yadav, O. V. Badure, “Selective engineering in O-alkylation of m-cresol with benzyl chloride using liquid–liquid–liquid phase transfer catalysis”, Journal of Molecular Catalysis A: Chemical 288 (2008) 33–41 [10]J. L. Louis, Synthetic Organic Sonochemistry, New York and London: Plenum Press.(1894) [11]http://www.deafwhale.com/stranded_whale/barotrauma.htm [12]K. S. Suslick, “The Chemical Effects Of Ultrasound”, Scientific American, 260 (1989) 80–86. [13]http://www.blossombio .com.tw/Products/UltrasonicCleaner.html [14]S. Aljbour., T. Tagawa., H. Yamada., “Ultrasound-assisted phase transfer catalysis in a capillary microreactor”, Chemical Engineering and Processing 48 (2009) 1167–1172 [15]S. Aljbour., T. Tagawa., H. Yamada., “Ultrasound-assisted capillary microreactor for aqueous–organic multiphase reactions”, Journal of Industrial and Engineering Chemistry 15 (2009) 829–834 [16]榎宮卓次,白石泰士, “Phenoxyacetone Derivatives”, JPN. Kokia Tokyo Koho, JP. 60, 123, 431(1986) [17]榎宮卓次,白石泰士, “1-Phenoxy-2,2-Diakoxypropanes”, JPN. Kokia Tokyo Koho, JP. 60, 64, 941 (1985) [18]鬼頭追造,田村雅樹,池呎晴三, “2,3-Dihydrobenzofuran Derivative”, JPN. Kokia Tokyo Koho, JP. 60, 100, 566 (1986) [19] J. Jovanovic, E.V. Rebrov, T.A. Nijhuis, J.C. Schouten, “Alkylation of benzyl cyanide in a microreactor - Effect of hydrodynamics on reaction rate and selectivity”, Proceedings of the Xth Netherlands Catalysis and Chemistry Conference (NCCC X), 02-04 March 2009, Noordwijkerhout. - Netherlands, Noordwijkerhout : s.n., (2009) 129 [20]G. Dummann, U. Quittmann, L. Groschel, David W. Agar, O. Worz, K. Morgenschweis, “The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid–liquid reactions”, Catalysis Today 79–80 (2003) 433–439 [21]J. Jovanovic′, Evgeny V. Rebrov, T. A. (Xander) Nijhuis, V. Hessel, Jaap C. Schouten, “Phase-Transfer Catalysis in Segmented Flow in a Microchannel: Fluidic Control of Selectivity and Productivity”, Ind. Eng. Chem. Res. 49, (2010) 2681–2687 [22]R. Halder, A. Lawal , R. Damavarapu, “Nitration of toluene in a microreactor”, Catalysis Today 125 (2007) 74–80 [23]Anne-Laure Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, “Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors”, Chemical Engineering Science 63 (2008) 4035–4044 [24]M. N. Kashid, L. Kiwi-Minsker, “Microstructured Reactors for Multiphase Reactions: State of the Art”, Ind. Eng. Chem. Res., 48, (2009) 6465–6485 [25]S. K. R. Cherlo, K. Devaki, S. Pushpavanam, “Phase transfer catalysis of alkaline hydrolysis of n-butyl acetate: Comparison of performance of batch and micro-reactors”, Chemical Engineering and Processing 49 (2010) 484–489 [26]A. Ghaini, M.N. Kashid, D.W. Agar, ” Effective interfacial area for mass transfer in the liquid–liquid slug flow capillary microreactors”, Chemical Engineering and Processing 49 (2010) 358–366 [27]B. Ahmed-Omer, D. Barrow, T. Wirth, “Effect of segmented fluid flow, sonication and phase transfer catalysis on biphasic reactions in capillary microreactors”, Chemical Engineering Journal 135S (2008) S280–S283 [28] N. Kornblum, P. J. Berrigan, W. J. Ie Noble, J. Am. Chem. Soc., 85, (1963)1141 [29] N. Kornblum, R. Seltzer, P. Haberfield, J. Am. Chem. Soc. 85, (1963)1148 [30]Gompper, R., “Relations between Structure and Reactivity of Ambifunctional Nucleophilic Compouds”, Angew. Chem. Internat. Edit., 3, (1964)560–570 [31]吳俊民,應用固-液及液-液相相間轉移觸媒合成丙烯基苯基醚之醚化反應動力學研究,台中市:國立中興大學化學工程研究所碩士論文,2000 [32]彭冠益,以續流式反應器合成鄰-基苯甲酸丁酯之超音波輔助三液相相間轉移催化反應研究,台中市:國立中興大學化學工程研究所碩士論文,2008 [33]http://www.ppci.com.ph/msds2k10/11_mibk.pdf
摘要: 本研究是探討以超音波輔助液-液相相間轉移觸媒在毛細管微反應器內合成丙烯基苯基醚之研究。一般來說,使用微反應器可使反應物間接觸的比表面積增加,而使反應速率增加。所以本實驗會去比較批式反應器以及微反應器的差異。而操作變數包括反應器長度效應、觸媒種類效應、觸媒添加量效應、不同有機溶劑效應、溫度效應、滯留時間、超音波頻率及功率效應,進而得到較適當的操作條件。 丙烯基苯基醚的產率會隨滯留時間的增加而增加,因此將水相與有機相的進料流速控制在0.03毫升/分鐘。當溫度升高時,反應速率會隨之增加,而超音波頻率越低,則可獲得較好的產率。 在以提高產率的前提下,本系統的操作條件為酚化鈉0.25 M,溴化四丁基銨0.0625 M,溴化丙烯0.125 M,去離子水60毫升,甲基異丁基酮60毫升,水相流速0.03毫升/分鐘,有機相流速0.03毫升/分鐘,反應器長度:107公分,超音波頻率28 kHz、功率300 W,反應溫度60 °C下,可得到產率91.2 %。反應溫度45~60 °C的範圍內,求得的活化能為19.27 kcal/mol。 當反應添加超音波輔助時,反應性會大幅提升,在不使用超音波下產率為62.6 %,加入超音波的輔助可使產率提升至91.2 %,比較兩者使用超音波可使產率提升45.7 %。 而在反應器的比較上,在相同的滯留時間下,微反應器的產率明顯高於批式反應器,當滯留時間為7.2分鐘時,其產率為:91.2 %(Micro-reactor)、70 %(Batch),而微反應器的反應速率常數明顯高於批式反應器的反應速率常數,由此可知,使用微反應器具有較好的反應效率。
In this study, allyl phenyl ether was synthesized by ultrasound-assisted liquid-liquid phase-transfer catalysis in capillary micro-reactor. In general, we use micro-reactor can be increased specific surface between organic phase and aqueous phase, and increased reaction rate. In this study, we compared the difference in performance between batch reactor and micro-reactor. The operating parameters including reactor length, types of catalyst, amount of catalyst, types of solvent, reaction temperature, space time, ultrasonic frequency and power, were all performed to find the optimal reaction conditions. The yield of allyl phenyl ether increased with the space time, so the flow rates of aqueous phase and organic phase were both controlled at 0.03 ml/min. Increasing reaction temperature can increase the reaction rate. The lower ultrasonic frequency made the yield of product higher. For improved productivity, in the conditions of 0.25 M of sodium phenoxide trihdrate, 0.0625 M of tetra-n-butylammonium bromide, 0.125 M of allyl bromide, 60 cm3 of de-ionized water, 60 cm3 of methyl isobutyl ketone, aqueous phase flow rate was 0.03 cm3/min, organic phase flow rate was 0.03 cm3/min, reactor length is 107 cm, ultrasonic frequency at 28 kHz and power 300 W, and the reaction temperature at 60 °C, the product was 91.2 %. The apparent activation energy can be obtained as 19.27 kcal/mol in the range of 45~60 °C. When reaction with ultrasound assisted, the reaction activity can be increased. The yield of product was 62.6 % without ultrasound assisted, but when reaction with ultrasound assisted, the yield of product was 91.2 %. Compared the reaction with and without ultrasound assisted, the product yield can be raised to 45.7 %. Comparison of the reactor, at the same space time, the yield of product in micro-reactor was higher than the yield of product in batch reactor. When the space time was 7.2 minutes, the yield of product in micro-reactor was 91.2 % and the yield of product in batch reactor was 70 %. The reaction constant in Micro-reactor was higher than that in batch reactor, so we used the micro-reactor to get the better reaction efficiency.
URI: http://hdl.handle.net/11455/3858
其他識別: U0005-0407201116444300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407201116444300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.