Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3860
標題: 以網版印刷技術製備多層壁奈米碳管/幾丁聚醣電化學DNA感測器之研究
Screen Printed Multiwalled Carbon Nanotubes/Chitosan Electrode for Electrochemical DNA Sensor
作者: 謝宗益
Hsieh, Tsung-Yi
關鍵字: electrochemical DNA sensor
電化學DNA感測器
screen printing technology
網版印刷技術
出版社: 化學工程學系所
引用: [1] K. Matsumoto, Y. Shinohara, S.S. Bag, Y. Takeuchi, T. Morii, Y. Saito, I. Saito, Bioorganic & Medicinal Chemistry Letters, 19 (2009) 6392-6395. [2] B. Wang, Q. Yang, L. Liu, S. Wang, Colloids and Surfaces B: Biointerfaces, 85 (2011) 8-11. [3] M. Passamano, M. Pighini, Sensors and Actuators B: Chemical, 118 (2006) 177-181. [4] Q. Luan, Y. Xue, X. Yao, Sensors and Actuators B: Chemical, 147 (2010) 561-565. [5] D. Hao, M. Ohme-Takagi, K. Yamasaki, FEBS Letters, 536 (2003) 151-156. [6] Z. Altintas, Y. Uludag, Y. Gurbuz, I. Tothill, Analytica Chimica Acta, 712 (2012) 138-144. [7] K. Arora, N. Prabhakar, S. Chand, B.D. Malhotra, Sensors and Actuators B: Chemical, 126 (2007) 655-663. [8] Q. Guo, Y. Bao, X. Yang, K. Wang, Q. Wang, Y. Tan, Talanta, 83 (2010) 500-504. [9] J. Wang, V.B. Nascimento, S.A. Kane, K. Rogers, M.R. Smyth, L. Angnes, Talanta, 43 (1996) 1903-1907. [10] Y.-C. Tsai, S.-Y. Chen, H.-W. Liaw, Sensors and Actuators B: Chemical, 125 (2007) 474-481. [11] S. Iijima, Nature, 354 (1991) 56. [12] W. Zhang, T. Yang, D.M. Huang, K. Jiao, Chinese Chemical Letters, 19 (2008) 589-591. [13] E. Yapasan, A. Caliskan, H. Karadeniz, A. Erdem, Materials Science and Engineering: B, 169 (2010) 169-173. [14] http://en.wikipedia.org/wiki/DNA. [15] http://zh.wikipedia.org/wiki/慢性粒細胞性白血病. [16] J. Chen, J. Zhang, L. Huang, X. Lin, G. Chen, Biosensors and Bioelectronics, 24 (2008) 349-355. [17] X.-H. Lin, P. Wu, W. Chen, Y.-F. Zhang, X.-H. Xia, Talanta, 72 (2007) 468-471. [18] http://www.jaist.ac.jp/~yokoyama/biosensor.html. [19] D.L. Polla, L.F. Francis, MRS Buletin, 59 (1996). [20] J. Wang, Electroanalysis, 13 (2001) 983-988. [21] Y. Wang, H. Xu, J. Zhang, G. Li, Sensors, 8 (2008) 2043-2081. [22] C.-A. Lee, Y.-C. Tsai, Sensors and Actuators B: Chemical, 138 (2009) 518-523. [23] Y.-C. Tsai, S.-Y. Chen, C.-A. Lee, Sensors and Actuators B: Chemical, 135 (2008) 96-101. [24] M. Murata, C. Gouda, K. Yano, S. Kuroki, T. Suzutani, Y. Katayama, Analytical Sciences, 19 (2003) 1355-1357. [25] X. Zuo, F. Xia, Y. Xiao, K.W. Plaxco, Journal of the American Chemical Society, 132 (2010) 1816-1818. [26] Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, Analytical Chemistry, 70 (1998) 1288-1296. [27] S.-R. Hong, H.-D. Jeong, S. Hong, Talanta, 82 (2010) 899-903. [28] N. Lassalle, A. Roget, T. Livache, P. Mailley, E. Vieil, Talanta, 55 (2001) 993-1004. [29] N.G. Clack, K. Salaita, J.T. Groves, Nat Biotech, 26 (2008) 825-830. [30] J. Wang, M. Jiang, T.W. Nilsen, R.C. Getts, Journal of the American Chemical Society, 120 (1998) 8281-8282. [31] D. Ozkan, A. Erdem, P. Kara, K. Kerman, B. Meric, J. Hassmann, M. Ozsoz, Analytical Chemistry, 74 (2002) 5931-5936. [32] S. Steenken, S.V. Jovanovic, Journal of the American Chemical Society, 119 (1997) 617-618. [33] J. Wang, A.-N. Kawde, Analyst, 127 (2002) 383-386. [34] M.T. Carter, A.J. Bard, Journal of the American Chemical Society, 109 (1987) 7528-7530. [35] F. Patolsky, A. Lichtenstein, I. Willner, Journal of the American Chemical Society, 123 (2001) 5194-5205. [36] B. Fang, S. Jiao, M. Li, Y. Qu, X. Jiang, Biosensors and Bioelectronics, 23 (2008) 1175-1179. [37] N. Zhou, T. Yang, K. Jiao, C.-X. Song, Chinese Journal of Analytical Chemistry, 38 (2010) 301-306. [38] S.O. Kelley, J.K. Barton, N.M. Jackson, M.G. Hill, Bioconjugate Chemistry, 8 (1997) 31-37. [39] A. Erdem, K. Kerman, B. Meric, M. Ozsoz, Electroanalysis, 13 (2001) 219-223. [40] K. Hu, D. Lan, X. Li, S. Zhang, Analytical Chemistry, 80 (2008) 9124-9130. [41] A.B. Steel, T.M. Herne, M.J. Tarlov, Analytical Chemistry, 70 (1998) 4670-4677. [42] N. Zhu, A. Zhang, Q. Wang, P. He, Y. Fang, Analytica Chimica Acta, 510 (2004) 163-168. [43] J. Wang, D.K. Xu, R. Polsky, Journal of the American Chemical Society, 124 (2002) 4208-4209. [44] G. Liu, Y. Wan, V. Gau, J. Zhang, L. Wang, S. Song, C. Fan, Journal of the American Chemical Society, 130 (2008) 6820-6825. [45] C.A. Galan-Vidal, J. Munoz, C. Domı́nguez, S. Alegret, Sensors and Actuators B: Chemical, 52 (1998) 257-263. [46] M. Albareda-Sirvent, A. Merkoci, S. Alegret, Sensors and Actuators B: Chemical, 69 (2000) 153-163. [47] M. Tudorache, C. Bala, Analytical and Bioanalytical Chemistry, 388 (2007) 565-578. [48] C.-C. Pang, M.-H. Chen, T.-Y. Lin, T.-C. Chou, Sensors and Actuators B: Chemical, 73 (2001) 221-227. [49] P.C. Pandey, S. Upadhyay, I. Tiwari, V.S. Tripathi, Analytical Biochemistry, 288 (2001) 39-43. [50] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochemistry Communications, 5 (2003) 408-411. [51] M. Umana, J. Waller, Analytical Chemistry, 58 (1986) 2979-2983. [52] K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin, L. Jin, Analyst, 128 (2003) 249-254. [53] Y. Yang, Z. Wang, M. Yang, J. Li, F. Zheng, G. Shen, R. Yu, Analytica Chimica Acta, 584 (2007) 268-274. [54] K.P. Troyer, R.M. Wightman, Analytical Chemistry, 74 (2002) 5370-5375. [55] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Microchemical Journal, 73 (2002) 325-333. [56] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280 (1998) 1253-1256. [57] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smalley, H.H. Hwu, J.G. Chen, Journal of the American Chemical Society, 123 (2001) 10699-10704. [58] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates Jr, J. Liu, R.E. Smalley, Chemical Physics Letters, 321 (2000) 292-296. [59] J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, The Journal of Physical Chemistry B, 108 (2004) 11317-11320. [60] R. Singh, G. Sumana, R. Verma, S. Sood, K.N. Sood, R.K. Gupta, B.D. Malhotra, Thin Solid Films, 519 (2010) 1135-1140. [61] 洪玉惠, 中興化工所碩士論文, (2007). [62] 陳志宏, 雲林科技大學化工所碩士論文, (2005). [63] 魏秀穎, 國立清華大學化學工程學系碩士論文, (1996). [64] G. Binnig, C.F. Quate, C. Gerber, Physical Review Letters, 56 (1986) 930-933. [65] J. Wang, M. Musameh, Analyst, 129 (2004) 1-2. [66] B.D. Sattin, M.C. Goh, Biophysical Journal, 87 (2004) 3430-3436. [67] D. Humenik, D. Chorvat Jr, I. Novotny, V. Tvarožek, T.S. Oretskaya, T. Hianik, Medical Engineering & Physics, 28 (2006) 956-962. [68] N. Zhou, T. Yang, C. Jiang, M. Du, K. Jiao, Talanta, 77 (2009) 1021-1026. [69] Q. Wang, B. Zhang, X. Lin, W. Weng, Sensors and Actuators B: Chemical, 156 (2011) 599-605.
摘要: 本研究以幾丁聚醣(chitosan, CHIT)分散奈米碳管(mulit-walled carbon nanotube, MWCNTs)並加入單股探針DNA(single-stranded DNA, ssDNA, probe DNA)製備出ssDNA/MWCNTs/CHIT複合溶液,並使用網版印刷技術(screen printing technology)固定於網印碳電極(screen printed electrode, SPE)上製作出ssDNA/MWCNTs/CHIT/SPE之DNA感測器。本論文分成兩部分,第一部分在探討使用Fe[(CN)]63-/4-作為指示劑,偵測其電極表面變化,證明此DNA感測器具有偵測target DNA能力,其中MWCNTs具有幫助電子傳遞能力,可以放大此感測器訊號;CHIT因為其帶有NH3+官能基,能夠固定帶有PO4-之probe DNA,並使用AFM於液相中配合雜交時間觀察其表面形態變化,此感測器靈敏度為86.76 (μA/cm2*log mol/L),偵測範圍為10-7到10-9 M,偵測極限為0.8 nM。 第二部分使用帶有白血病序列之ssDNA固定於MWCNTs/CHIT複合溶液中,以網版印刷技術製作出ssDNA/MWCNTs/CHIT/SPE之白血病DNA感測器,MB作為指示劑,證明其具有檢測功能。MB會和probe DNA之G鹼基結合,藉由target DNA和probe DNA親和力大於MB之親和力,偵測其雜交前後電流差以達到檢測目的,也結合AFM於液相中隨雜交時間觀察表面形貌變化,證明此白血病DNA感測器達到良好的偵測效果,其靈敏度為1.234 (μA/cm2*log mol/L),偵測範圍為10-5到10-9 M,偵測極限為0.17 nM。以上兩部分實驗均以網版印刷技術製備出DNA生物感測器,達到大量製造、成本低及穩定性高且均有良好的偵測效果與選擇性佳等優點。
A disposable electrochemical DNA biosensor was developed by screen printing technology. The screen printing technology has demonstrated a capability of fabricating the biosensor rapidly, cheaply, and quite precisely. The multi-walled carbon nanotubes (MWCNTs) was dispersed with chitosan (CHIT) to form complex ink and the probe DNA was immobilized in complex ink. The homogeneity of the resulting ssDNA/MWCNTs/CHIT was printed onto the SPE by screen printing technology and hybridization with target DNA forms dsDNA. The first part, we using Fe[(CN)]63-/4- as a mediator and hybridization reaction on the electrode was monitored by cyclic votammetry (CV) and differential pulse voltammetry (DPV) . The effect of several experimental parameters, such as the weight of the MWCNTs and hybridization time, that were explored to optimize the electro-analytical performance of the DNA sensor. The morphology was observed by AFM in liquid to confirm hybridization with target DNA in different times. The linear range of this sensor to target DNA was from 10-7 M to 10-9 M. The detection limit was 0.8 nM. The second part we detection of DNA sequences relating to Chronic Myelogenous Leukemia (CML) using methylene blue (MB) as the hybridization indicator. A significant difference of the peak current for MB upon the hybridization from ssDNA to dsDNA was observed by CV and DPV. The optimization of hybridization time was observed along with AFM in liquid. The linear range of this sensor was form 10-5 M to 10-9 M. The detection limit was 0.17 nM.
URI: http://hdl.handle.net/11455/3860
其他識別: U0005-0407201215470900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407201215470900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.