Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3861
標題: 碳化矽奈米薄膜作為電化學感測器之探討
Electrochemical sensors based on silicon carbide nanocomposite
作者: 吳維哲
Wu, Wei-Che
關鍵字: silicon carbide
碳化矽
electrochemical sensors
電化學感測器
出版社: 化學工程學系所
引用: [1] H. Li, Q. Wang, J. Xu, W. Zhang, L. Jin, Sensors Actuators B: Chem., 87 (2002) 18-24. [2] C.P. Sousa, A.S. Polo, R.M. Torresi, S.I.C. de Torresi, W.A. Alves, J. Colloid Interface Sci., 346 (2010) 442-447. [3] B.J. Sanghavi, A.K. Srivastava, Electrochim. Acta, 55 (2010) 8638-8648. [4] J. Song, J. Yang, J. Zeng, J. Tan, L. Zhang, Sensors Actuators B: Chem., 155 (2011) 220-225. [5] K. Wang, Q. Liu, Q.-M. Guan, J. Wu, H.-N. Li, J.-J. Yan, Biosens. Bioelectron., 26 (2011) 2252-2257. [6] V. Duplan, E. Frost, J.J. Dubowski, Sensors Actuators B: Chem., 160 (2011) 46-51. [7] T.-M. Pan, M.-D. Huang, W.-Y. Lin, M.-H. Wu, Anal. Chim. Acta, 669 (2010) 68-74. [8] P.M. Levine, P. Gong, R. Levicky, K.L. Shepard, Biosens. Bioelectron., 24 (2009) 1995-2001. [9] S. Singh, R.C. Buchanan, Materials Science and Engineering: C, 27 (2007) 551-557. [10] A. Salimi, L. Mohamadi, R. Hallaj, S. Soltanian, Electrochem. Commun., 11 (2009) 1116-1119. [11] V. Hefco, K. Yamada, A. Hefco, L. Hritcu, A. Tiron, T. Nabeshima, Eur. J. Pharmacol., 475 (2003) 55-60. [12] D.L. Robinson, B.J. Venton, M.L.A.V. Heien, R.M. Wightman, Clin. Chem., 49 (2003) 1763-1773. [13] R.M. Wightman, L.J. May, A.C. Michael, Anal. Chem., 60 (1988) 769A-779A. [14] A. Barbeau, F.H. McDowell, L-DOPA and PARKINSONISM, F.A. DAVIS COMPANY, Canada, 1970. [15] M. Pufulete, Chem. Br., (1997) 33-37. [16] http://zh.wikipedia.org/wiki/File:Dopamin_-_Dopamine.svg. [17] Rome, Food and Agriculture Organization, (2003). [18] 林興中, 財團法人糖尿病關懷基金會2006 年「糖尿病家族」, (2006 ). [19] 黃展偉, 黃國晉, 楊偉勛, 家庭醫學與基層醫療, 25 298-304. [20] http://www.who.int/mediacentre/factsheets/fs312/zh/index.html. [21] http://en.wikipedia.org/wiki/Glucose#cite_note-3. [22] 陳錦順, 內分泌與代謝, 藝軒圖書出版社, 台北市, 1992. [23] J.-F. Wu, M.-Q. Xu, G.-C. Zhao, Electrochem. Commun., 12 (2010) 175-177. [24] D. Wang, L. Chen, Electrochim. Acta, 54 (2009) 4316-4320. [25] W. Zheng, H.Y. Zhao, J.X. Zhang, H.M. Zhou, X.X. Xu, Y.F. Zheng, Y.B. Wang, Y. Cheng, B.Z. Jang, Electrochem. Commun., 12 (2010) 869-871. [26] F. Tasca, L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, G. Noll, The Journal of Physical Chemistry C, 112 (2008) 9956-9961. [27] M.R. Tarasevich, A.I. Yaropolov, Bioelectrochem. Bioenergetics, 6 (1979) 393-403. [28] I.V. Berezin, S.D. Varfolomeev, Appl. Biochem. Bioeng., 2 (1978) 259-290. [29] W. Liang, Y. Zhuobin, Sensors, 3 (2003) 544-554. [30] A.L. Ghindilis, I.N. Kurochkin, Biosens. Bioelectron., 9 (1994) 353-357. [31] J.-L. Huang, Y.-C. Tsai, Sensors Actuators B: Chem., 140 (2009) 267-272. [32] K.-J. Huang, D.-J. Niu, X. Liu, Z.-W. Wu, Y. Fan, Y.-F. Chang, Y.-Y. Wu, Electrochim. Acta, 56 (2011) 2947-2953. [33] Y. Wang, R. Yuan, Y. Chaia, W. Li, Y. Zhuo, Y. Yuan, J. Li, J. Mol. Catal. B: Enzym., 71 (2011) 146-151. [34] Q. Liu, X. Lu, J. Li, X. Yao, J. Li, Biosens. Bioelectron., 22 (2007) 3203-3209. [35] C. Guo, H. Sun, X.S. Zhao, Sensors Actuators B: Chem., 164 (2012) 82-89. [36] X. Zhao, Z. Mai, X. Kang, Z. Dai, X. Zou, Electrochim. Acta, 53 (2008) 4732-4739. [37] W. Sun, R.-f. Gao, K. Jiao, Electroanalysis, 19 (2007) 1368-1374. [38] J.H. Pazur, K. Kleppe, Biochemistry, 3 (1964) 578-583. [39] http://www.rcsb.org/pdb/101/motm.do?momID=77. [40] http://www.3dmet.dna.affrc.go.jp/cgi/show_data.php?acc=B04619. [41] http://en.wikipedia.org/wiki/File:FAD_FADH2_equlibrium.png. [42] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, J. Chromatogr. B, 847 (2007) 88-94. [43] X. Zhu, X. Ge, C. Jiang, Journal of Fluorescence, 17 (2007) 655-661. [44] H.-Y. Tsai, Z.-H. Lin, H.-T. Chang, Biosens. Bioelectron., 35 (2012) 479-483. [45] A.S. Adekunle, B.O. Agboola, J. Pillay, K.I. Ozoemena, Sensors Actuators B: Chem., 148 (2010) 93-102. [46] G. Chang, Y. Tatsu, T. Goto, H. Imaishi, K. Morigaki, Talanta, 83 (2010) 61-65. [47] H. He, X. Xu, H. Wu, Y. Jin, Adv. Mater., 24 (2012) 1736-1740. [48] H. Qiu, X. Huang, J. Electroanal. Chem., 643 (2010) 39-45. [49] X. Bo, J. Bai, L. Yang, L. Guo, Sensors Actuators B: Chem., 157 (2011) 662-668. [50] B.-Z. Chi, Q. Zeng, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, Sensors Actuators B: Chem., 140 (2009) 591-596. [51] T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, X. Wang, Sensors Actuators B: Chem., 138 (2009) 344-350. [52] X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Biosens. Bioelectron., 25 (2009) 901-905. [53] T.-H. Yang, C.-L. Hung, J.-H. Ke, J.-M. Zen, Electrochem. Commun., 10 (2008) 1094-1097. [54] R. Madar, Nature, 430 (2004) 974-975. [55] 趙策洲, 高勇, 半導體矽基材料及其光波導, 北京科技大學印刷廠, 北京市, 1997. [56] J.B. Casady, R.W. Johnson, Solid-State Electronics, 39 (1996) 1409-1422. [57] H. Matsunami, Diamond Relat. Mater., 2 (1993) 1043-1050. [58] H. Matsunami, T. Kimoto, Materials Science and Engineering: R: Reports, 20 (1997) 125-166. [59] Y.-C. Lai, Y.-C. Tsai, Chem. Commun., 48 (2012) 6696-6698. [60] S. Dheenadayalan, R.-H. Song, D.-R. Shin, J. Power Sources, 107 (2002) 98-102. [61] X. Tong, L. Dong, G. Jin, Y. Wang, X.Y. Guo, Fuel Cells, 11 (2011) 907-910. [62] D. Chen, J. Xu, B. Qian, S. Chen, J. Mei, W. Li, L. Xu, K. Chen, Mater. Chem. Phys., 111 (2008) 279-282. [63] D.N. Hume, I.M. Kolthoff, J. Am. Chem. Soc., 63 (1941) 2805-2806. [64] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, WILEY, 2000. [65] D.R.Crow, 電化學的原理與應用, 高立, 1998. [66] C. Brett, A.M.O. Brett, Electroanalysis, Oxford Chemistry Press, New York, 1998. [67] J. Wang, Analytical Electrochemistry, 2rd Edition, WILEY-VCH, New York, 2001. [68] J. Wang, Stripping Analysis: Principles, Instrumentation, and Applications, VCH, New York, 1985. [69] 胡啟章, 電化學原理與方法, 五南圖書, 2002. [70] M.E. ORAZEM, B. TRIBOLLET, ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY, WILEY, New Jersey, 2008. [71] X. Lin, Y. Zhang, W. Chen, P. Wu, Sensors Actuators B: Chem., 122 (2007) 309-314. [72] S. Jo, H. Jeong, S.R. Bae, S. Jeon, Microchem. J., 88 (2008) 1-6. [73] X. Chen, H. Ye, W. Wang, B. Qiu, Z. Lin, G. Chen, Electroanalysis, 22 (2010) 2347-2352. [74] Y. Oztekin, A. Ramanaviciene, Z. Yazicigil, A.O. Solak, A. Ramanavicius, Biosens. Bioelectron., 26 (2011) 2541-2546. [75] Y. Huang, W. Zhang, H. Xiao, G. Li, Biosens. Bioelectron., 21 (2005) 817-821. [76] L. E, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101 (1979) 19-28. [77] X. Luo, A.J. Killard, M.R. Smyth, Electroanalysis, 18 (2006) 1131-1134. [78] Y.-L. Yao, K.-K. Shiu, Electroanalysis, 20 (2008) 1542-1548. [79] H. Zhang, Z. Meng, Q. Wang, J. Zheng, Sensors Actuators B: Chem., 158 (2011) 23-27. [80] C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, S. Yao, Biosens. Bioelectron., 23 (2008) 1272-1277. [81] P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, C. Cai, Electrochim. Acta, 55 (2010) 8606-8614. [82] L. Yang, H. Xiong, X. Zhang, S. Wang, X. Zhang, Biosensors Bioelectron., 26 (2011) 3801-3805. [83] Y. Wang, L. Liu, M. Li, S. Xu, F. Gao, Biosens. Bioelectron., 30 (2011) 107-111. [84] J.-C. Vidal, E. Garcia, S. Mendez, P. Yarnoz, J.-R. Castillo, The Analyst, 124 (1999) 319-324.
摘要: 本論文成功的利用簡單且快速的方法來製備以碳化矽(SiC)奈米粒子為主要材料之感測器。本論文分成兩部分,第一部分主要在探討SiC奈米薄膜修飾於玻璃碳電極(GCE)上作為多巴胺化學感測器之應用。利用原子力顯微鏡(AFM)與場發射掃描式電子顯微鏡(FE-SEM)去觀察所製備出SiC奈米薄膜修飾於GCE (SiC/GCE)前後之表面形貌差異。接著再利用循環伏安法與方波伏安法來研究所製備出之SiC/GCE對於多巴胺,敗壞血酸和尿酸之電化學特性。將其與未修飾之GCE比較發現SiC/GCE在多巴胺,敗壞血酸與尿酸中的電化學行為均優於GCE,表示SiC奈米粒子對於多巴胺,敗壞血酸與尿酸均具有良好的電催化效果。此外,SiC/GCE可以在含有干擾物的情況下準確的偵測出多巴胺的含量,靈敏度為16.9 A M-1 cm-2 而偵測極限則為 0.05 mM。 第二部分的主題主要在探討GOD (Glucose oxidase)酵素的直接電子傳遞性質與其應用,將GOD酵素與SiC/Nafion奈米複合薄膜一起修飾於GCE上,利用AFM去觀察GOD酵素修飾前與修飾後表面微結構的變化。並利用循環伏安法與安培法來探討GOD/SiC/Nafion奈米複合薄膜的電化學性質。由循環伏安法在0.1M的磷酸緩衝溶液(pH 7)的掃描之下可觀察到一對可逆的氧化還原峰出現在-0.388 V與-0.459 V的位置,表示GOD酵素保持良好的活性在此奈米複合薄膜之中,並由不同掃描速率實驗得知此奈米複合薄膜為表面控制反應(surface-controlled)。經由各個條件最佳化後,利用安培法以GOD/SiC/Nafion奈米複合薄膜來偵測葡萄糖濃度,所得到的靈敏度為5.95 μA mM-1 cm-2,偵測極限為2.27 μM,線性範圍為10-1100 μM,KM值為1.0 mM。由干擾物實驗證實此葡萄糖生物感測器可避免掉敗壞血酸,尿酸的干擾,並成功將GOD/SiC/Nafion奈米複合薄膜用來偵測合成血清中的葡萄糖。
This study demonstrates that an efficient electrode for electrocatalytic detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) can be directly obtained using cast deposition of silicon carbide (SiC) nanoparticles onto the surface of glassy carbon electrode. The morphology of the resulting SiC film was characterized by atomic force microscopy. cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviors of AA, DA, and UA at the SiC coated glassy carbon electrode. Compared to a bare glassy carbon electrode, the SiC coated glassy carbon electrode exhibits the abilities to lower the electrooxidation potential and to raise the current responses of AA, DA, and UA. The SiC coated electrode resolved the overlapping voltammetric responses of AA, DA, and UA, which could be used for selective determination of DA in the presence of AA and UA. The peak currents obtained from DPV for selective determination of DA in the presence of AA and UA displayed a sensitivity of 16.9 A M-1 cm-1 and a detection limit of 50 nM. The SiC coated glassy carbon electrode shows excellent sensitivity, good selectivity, and low detection limit for DA detection, thus is promising for the future development of electrochemical sensors. In the next part, SiC was used to prepare a biosensor electrode for the detection of glucose concentrations by direct electrochemistry of glucose oxidase (GOD). The morphology of the GOD/SiC/Nafion nanocomposite was characterized by atomic force microscopy. The root-mean-square roughness value of the film surface decreased significantly after GOD was immobilized in the SiC/Nafion nanocomposite film. The electrochemical performance of the GOD/SiC/Nafion modified electrode was investigated by cyclic voltammetry and amperometric. Cyclic voltammetry measurements of the immobilized GOD showed a pair of well-defined and quasi-reversible redox peaks at the SiC-based electrode and provided evidence for a surface-controlled electrode process. Amperometric results showed the biosensor to have low detection limit (2.27 μM) to glucose over a linear concentration range of 10 to 1100 μM (r2 = 0.999). The biosensor exhibits good reproducibility and anti-interference properties, and is suitable for application in the determination of glucose in synthetic serum.
URI: http://hdl.handle.net/11455/3861
其他識別: U0005-0407201216112600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407201216112600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.