Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3862
標題: 以電化學沉積鉑和鉑釕金屬於石墨烯載體上作為甲醇燃料電池陽極材料之探討
Electrochemical deposition of platinum and platinum-ruthenium nanoparticles on graphene for methanol electrooxidation
作者: 張智凱
Chang, Chih-Kai
關鍵字: Graphene
石墨烯
Platinum
Ruthenium
Methanol


甲醇
出版社: 化學工程學系所
引用: [1] F. Gloaguen, J.M. LE&acute; GER, C. Lamy, Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates, J. Appl. Electrochem., 27 (1997) 1052-1060. [2] A. Arico, S. Srinivasan, V. Antonucci, DMFCs: from fundamental aspects to technology development, Fuel cells, 1 (2001) 133-161. [3] K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 14 (2004) 505-516. [4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta, 47 (2002) 3663-3674. [5] Y.H. Hong, Y.C. Tsai, Electrodeposition of platinum and ruthenium nanoparticles in multiwalled carbon nanotube-nafion nanocomposite for methanol electrooxidation, Journal of Nanomaterials, 2009 (2009). [6] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110 (2010) 132. [7] L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon, 48 (2010) 781-787. [8] Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochem. Commun., 11 (2009) 846-849. [9] Y. Xin, J. Liu, Y. Zhou, W. Liu, J. Gao, Y. Xie, Y. Yin, Z. Zou, Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell, J. Power Sources, 196 (2011) 1012-1018. [10]Y. Lin, X. Cui, C.H. Yen, C.M. Wai, PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells, Langmuir, 21 (2005) 11474-11479. [11] B. Cang&uuml;l, L. Zhang, M. Aindow, C. Erkey, Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO< sub> 2</sub> deposition, The Journal of Supercritical Fluids, 50 (2009) 82-90. [12] H.J. Kim, S.M. Choi, M.H. Seo, S. Green, G.W. Huber, W.B. Kim, Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst, Electrochem. Commun., (2011). [13] S.M. Choi, M.H. Seo, H.J. Kim, W.B. Kim, Synthesis of surface functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation, Carbon, (2010). [14] Y.C. Tsai, Y.H. Hong, Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation, J. Solid State Electrochem., 12 (2008) 1293-1299. [15] C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra, M. Pasquali, Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation, J. Power Sources, 183 (2008) 84-91. [16] 鄭雅堂, 燃料電池發電技術, 汽電共生報導第十四期, 第 17-25 頁, 民國 87 年, (1998). [17] J. Larminie, A. Dicks, K. . Fuel cell systems explained, (2003). [18] 高漢昌, 利用逆微胞法製備直接甲醇燃料電池 PtRu 奈米陽極觸媒之研究, (2007). [19] 楊志忠, 林頌恩, 韋文誠, 燃料電池的發展現況, in, 科學發展, 2003. [20] 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 燃料電池論文集, 經濟部能源委員會, pp15, 27 (1999). [21] A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. Today, 38 (1997) 445-457. [22] H. Dohle, J. Divisek, R. Jung, Process engineering of the direct methanol fuel cell, J. Power Sources, 86 (2000) 469-477. [23] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E. Gilles, Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis, Chem. Eng. Sci., 56 (2001) 333-341. [24] L. Carrette, K. Friedrich, U. Stimming, Fuel cells–fundamentals and applications, Fuel cells, 1 (2001) 5-39. [25] M.P. Hogarth, T.R. Ralph, Catalysis for Low Temperature Fuel Cells, Platinum Met. Rev., 46 (2002) 146-164. [26] O. Khazova, A. Mikhailova, A. Skundin, E. Tuseeva, A. Havranek, K. Wippermann, Kinetics of Methanol Oxidation on Supported and Unsupported Pt/Ru Catalysts Bonded to PEM, Fuel cells, 2 (2002) 99-108. [27] A. Ocampo, M. Miranda-Hernandez, J. Morgado, J. Montoya, P. Sebastian, Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance, J. Power Sources, 160 (2006) 915-924. [28] Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diamond Relat. Mater., 13 (2004) 1764-1770. [29] J. Ding, K.Y. Chan, J. Ren, F. Xiao, Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions, Electrochim. Acta, 50 (2005) 3131-3141. [30] K.W. Park, D.S. Han, Y.E. Sung, PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells, J. Power Sources, 163 (2006) 82-86. [31] Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, Y. Nishina, High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem. Phys. Lett., 294 (1998) 593-598. [32] F. Alcaide, G. &Aacute;lvarez, P.L. Cabot, H.-J. Grande, O. Miguel, A. Querejeta, Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells, Int. J. Hydrogen Energy, 36 (2011) 4432-4439. [33] B. Grgur, N. Markovic, P. Ross, Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys, Electrochim. Acta, 43 (1998) 3631-3635. [34] E.M. Crabb, R. Marshall, D. Thompsett, Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry, J. Electrochem. Soc., 147 (2000) 4440. [35] J. Luo, P.N. Njoki, Y. Lin, L. Wang, C.J. Zhong, Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen, Electrochem. Commun., 8 (2006) 581-587. [36] D.R. Rolison, P.L. Hagans, K.E. Swider, J.W. Long, Role of Hydrous Ruthenium Oxide in Pt−Ru Direct Methanol Fuel Cell Anode Electrocatalysts:  The Importance of Mixed Electron/Proton Conductivity, Langmuir, 15 (1999) 774-779. [37] T. Yajima, H. Uchida, M. Watanabe, In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt−Ru Alloy, The Journal of Physical Chemistry B, 108 (2004) 2654-2659. [38] Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell, The Journal of Physical Chemistry B, 108 (2004) 8234-8240. [39] 盧敏彥、張美元、廖怡萱、黃俊傑, 直接甲醇燃料電池電極觸媒, 工業材料雜誌, 196 期 (1993). [40] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 155 (2006) 95-110. [41] L. Jiang, G. Sun, X. Zhao, Z. Zhou, S. Yan, S. Tang, G. Wang, B. Zhou, Q. Xin, Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells, Electrochim. Acta, 50 (2005) 2371-2376. [42] J. Prabhuram, T. Zhao, Z. Tang, R. Chen, Z. Liang, Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells, The Journal of Physical Chemistry B, 110 (2006) 5245-5252. [43] S.H. Lee, N. Kakati, S.H. Jee, J. Maiti, Y.S. Yoon, Hydrothermal synthesis of PtRu nanoparticles supported on graphene sheets for methanol oxidation in direct methanol fuel cell, Mater. Lett., (2011). [44] 胡耀娟, 金娟, 张卉, 吴萍, 蔡称心, 石墨烯的制备, 功能化及在化学中的应用, 物理化学学报, 2 (2010) 2073. [45] H.W. Kroto, C60 Buckminsterfullerene, in, vol. 206, Cambridge Univ Press, 1990. [46] S. Iijima, Helical microtubules of graphitic carbon, nature, 354 (1991) 56-58. [47] J. Wang, M. Musameh, Y. Lin, Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors, J. Am. Chem. Soc., 125 (2003) 2408-2409. [48] P. Wallace, The band theory of graphite, Physical Review, 71 (1947) 622. [49] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [50] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9 (2008) 30-35. [51] M.W.K. Nomani, R. Shishir, M. Qazi, D. Diwan, V. Shields, M. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC, Sensors and Actuators B: Chemical, 150 (2010) 301-307. [52] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud''homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B, 110 (2006) 8535-8539. [53] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 15 (2005) 974-978. [54] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339. [55] G.K. Ramesha, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study, The Journal of Physical Chemistry C, 113 (2009) 7985-7989. [56] M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, The Journal of Physical Chemistry C, 114 (2010) 6426-6432. [57] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Environment-friendly method to produce graphene that employs vitamin C and amino acid, Chem. Mater., 22 (2010) 2213-2218. [58] J. Zhang, H. Yang, G. Shen, P. Cheng, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun., 46 (2010) 1112-1114. [59] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002. [60] D.R. Crow, Principles and applications of electrochemistry, CRC, 1994. [61] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley New York, 1980. [62] J. Wang, Analytical electrochemistry, Vch Verlagsgesellschaft Mbh, 2006. [63] M.A.B. Christopher, A.N.A.M.O. BRETT, A.M.O. Brett, Electrochemistry: Principles, Methods, and Applications, Departamento de Quimica, Universidade de Coimbra, Portugal Oxford New York Tokyo OXFORD UNIVERSITY, (1993). [64] http://140.114.18.41/micro/ [65]http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf, [66]http://acade.must.edu.tw/upfiles/ADUpload/c23_downmul1209823853.pdf, [67] J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide, Langmuir, 25 (2009) 5957-5968. [68] C.T. Hsieh, J.M. Wei, J.S. Lin, W.Y. Chen, Pulse electrodeposition of Pt nanocatalysts on graphene-based electrodes for proton exchange membrane fuel cells, Catal. Commun., (2011). [69] W. Li, A.M. Lane, Resolving the HUPD and HOPD by DEMS to determine the ECSA of Pt electrodes in PEM fuel cells, Electrochem. Commun., (2011). [70] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry, J. Power Sources, 105 (2002) 13-19. [71] C.S. Liao, C.T. Liao, C.Y. Tso, H.J. Shy, Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites, Mater. Chem. Phys., (2011). [72] A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes, J. Electroanal. Chem., 444 (1998) 41-53. [73] M.-C. Tsai, T.-K. Yeh, C.-H. Tsai, Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation, Mater. Chem. Phys., 109 (2008) 422-428. [74] X. Peng, K. Koczkur, S. Nigro, A. Chen, Fabrication and electrochemical properties of novel nanoporous platinum network electrodes, Chem. Commun., (2004) 2872-2873. [75] C.C. Yang, T. Wu, H.R. Chen, T.H. Hsieh, K.S. Ho, C.W. Kuo, Platinum Particles Embedded into Nanowires of Polyaniline Doped With Poly (Acrylic Acid-co-Maleic Acid) as Electrocatalyst for Methanol Oxidation, Int. J. Electrochem. Sci, 6 (2011) 1642-1654.
摘要: 本研究成功的使用電化學沉積法將鉑(Pt)、鉑釕(PtRu)奈米觸媒還原於石墨烯(Reduced graphene oxide,RGO)載體上,形成石墨烯-Pt(RGO-Pt)、石墨烯-PtRu (RGO-PtRu)奈米複合薄膜,作為直接甲醇燃料電池陽極材料。並使用場發射式掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM)、穿透式電子顯微鏡(Transmission electron microscope,TEM)兩種儀器對於其微觀的表面形貌作鑑定,再使用X光能量散譜儀(X-ray energy dispersive spectrometer,EDS)作元素分析。 將製備完成後RGO-Pt陽極觸媒材料修飾於玻璃碳電極上(RGO-Pt/GCE)在0.5 M硫酸及2 M甲醇和1 M硫酸混合溶液中探討其電化學活性面積(Electrochemically active surface area,ECSA)和對甲醇的氧化性及穩定性,並和奈米碳管(MWCNT)載體比較,得知其擁有較大的ECSA及較良好的甲醇電氧化活性及穩定性。之後增加釕(Ru)的使用,並改變鉑釕(PtRu)前驅物的濃度比,還原沉積出不同原子比的鉑釕(PtRu)金屬觸媒於RGO薄膜上,且在2 M甲醇和1 M硫酸混合溶液中探討其對甲醇的氧化活性,結果顯示在鉑釕(PtRu)原子比1.2:1時擁有最佳的甲醇氧化活性。並探討RGO-PtRu/GCE對甲醇氧化電活性的穩定性。最後,使用阻抗光譜分析法(Electrochemical impedance spectroscopy,EIS)更進一步探討RGO-PtRu/GCE對甲醇氧化的電化學特性。
In this report , platinum and platinum-ruthenium nanoparticles were successfully deposited on graphene. The resulting Pt and PtRu nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The RGO-Pt modified glassy carbon electrode (RGO-Pt/GCE) had a sharp hydrogen desorption peak at about -0.2 V vs. Ag/AgCl in a solution of 0.5 M H2SO4. In comparison with MWCNT-Pt modified glassy carbon electrode (MWCNT-Pt/GCE), the RGO-Pt/GCE showed high value of ECSA and had excellent electrocatalytic activity toward the methanol oxidation. The electrocatalytic properties of RGO-PtRu/GCE for methanol electrooxidation was investigated by cyclic voltammetry in 2 M CH3OH + 1 M H2SO4 solution. The RGO-PtRu/GCE exhibited a higher If/Ib value and a better stability than RGO-Pt/GCE. The PtRu bimetallic catalyst with 1.2 : 1 atomic ratio showed better electrocatalytic activity towards the methanol electrooxidation. Furthermore, electrochemical impedance spectroscopy (EIS) was also investigated the activity of these electrodes during methanol oxidation in this system.
URI: http://hdl.handle.net/11455/3862
其他識別: U0005-0407201216160300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407201216160300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.