Please use this identifier to cite or link to this item:
標題: 錫-3wt.%銀-0.5wt.%銅-(3~10wt.%)鉍銲料之電遷移研究
Electromigration study of Sn-3wt.%Ag-0.5wt.%Cu-(3~10wt.%)Bi solders
作者: 李尚樺
Lee, Shang-Hua
關鍵字: Lead-free solder
出版社: 化學工程學系所
引用: [1]Rao R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw-Hill, New York (2000). [2]”International Technology Roadmap for Semiconductors”, Semiconductor Industry Association (1999). [3]H. B. Huntington, “Diffusion in Solids : Recent Developments”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, pp. 303-352 (1975). [4]昝世蓉, “環保型電子產品的材料趨勢”, 工安環保報導(經濟部工業局 (2004) [5]J. Zhao, L. Qi, X. M. Wang, and L. Wang, “Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead-free solder”, Journal of Alloys and Compounds, Vol.375, pp. 196-201 (2004). [6]Y. Kariya and M. Otsuka, “Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5mass%Ag Solder Alloy”, Journal of Electronic Materials, Vol. 27, pp. 866-870 (1998). [7]M. J. Rizvi, Y. C. Chan, C. Bailey, H. Lub, and M.N. Islam, “Effect of adding 1 wt% Bi into the Sn–2.8Ag–0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging”, Journal of Alloys and Compounds, Vol. 407, pp. 208-214 (2006). [8]L. Qi, J. Zhao, X. M. Wang, and L. Wang, “The effect of Bi on the IMC growth in Sn-3Ag-0.5Cu solder interface during aging process”, IEEE International Conference on the Business of Electronic Product Reliability and Liability, pp. 42-46 (2004). [9]W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump- metallization”, Journal of Applied Physics, Vol. 94, pp. 5665-5671 (2003). [10]S. W. Chen, S. K. Lin, and J. M. Jao, “Electromigration Effects upon Interfacial Reactions in Flip-Chip Solder Joints”, Materials Transactions, Vol. 45, pp. 661-665 (2004). [11]T. Y. Lee and K. N. Tu, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, Journal of Applied Physics, Vol. 90, pp. 4502-4508 (2001). [12]T. Y. Lee and K. N. Tu, “Electromigration of eutectic SnPb solder interconnects for flip chip technology”, Journal of Applied Physics, Vol. 89, pp. 3189-3194 (2001). [13]J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, “Mechanism of electromigration-induced failure in the 97Pb–3Sn and 37Pb–63Sn composite solder joints”, Journal of Applied Physics, Vol. 94, pp. 7560-7566 (2003). [14]S. S. Ha, J. W. Kim, J. W. Yoon, S. O. Ha, and S. B. Jung, “Electromigration Behavior in Sn-37Pb and Sn-3.0Ag-0.5Cu Flip-Chip Solder Joints under High Current Density”, Journal of Electronic Materials, Vol. 38, pp. 70-77 (2008). [15]L. Xu, J. K. Han, J. J. Liang, K. N. Tu, and Y. S. Lai, “Electromigration induced high fraction of compound formation in SnAgCu flip chip solder joints with copper column”, Applied Physics Letters, Vol. 92, p. 262104 (2008). [16]H. B. Huntington and A. R. Grone, “Current-induced marker motion in gold wires”, Journal of Physics and Chemistry of Solids, Vol. 20(76), pp. 76-87 (1961). [17]J. R. Black, “Electromigration-A brief survey and some recent results”, IEEE Trans. on Electron Devices, Vol. ED-16, pp. 338-347 (1969). [18]C. M. Chen and S. W. Chen, “Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures”, Acta Materialia, Vol. 50, pp. 2461-2469 (2002). [19]H. Gan, W. J. Choi, G. Xu, and K. N. Tu, “Electromigration in Solder Joints and Solder Lines”, JOM, Vol. 54, pp. 34-37 (2002). [20]C. M. Chen, L. T. Chen, and Y. S. Lin, “Electromigration-Induced Bi Segregation in Eutectic SnBi Solder Joint”, Journal of Electronic Materials, Vol. 36, pp. 168-172 (2007). [21]H. He, G. Xu, and F. Guo, “Electromigration-induced Bi-rich whisker growth in Cu/Sn–58Bi/Cu solder joints”, Journal of Materials Science, Vol. 45, pp. 334-340 (2010). [22]C. Chen, H. M. Tong, and K. N. Tu, “Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints”, Annual Review of Materials Research, Vol. 40, pp. 531-555 (2010). [23]P. S. Ho and T. Kwok, “Electromigration studies of aluminum -intermetallic structure”, Extended Abstracts of the Conference on Solid State Devices and Materials, Vol. 16, p. 55 (1984). [24]C. K. Hu and J. M. E. Harper, “Copper interconnections and reliability”, Materials Chemistry and Physics, Vol. 52, pp. 5-16 (1998). [25]K. Zeng and K. N. Tu, “ Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Materials Science and Engineering: R: Reports, Vol. 38, pp. 55-105 (2002). [26]S. Brandenbery and S. Yeh, Proceedings of the Surface Mount International Conference and Exposition, SMI 98 Proceedings, pp. 337-344 (1998). [27]C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, “Microstructure- electromigration correlateion in a thin stripe of eutectic SnPb solder stressesd between Cu electrodes”, Applied Physics Letters, Vol. 75, pp. 58-60 (1999). [28]J. R. Lloyd and J. J. Clement, “Electromigration in copper conductors”, Thin Solid Films, Vol. 262, p. 135-141 (1995). [29]K. N. Tu,“Recent advances on electromigration in very-large-scale- integration of interconnects”, Journal of Appiled Physics. Vol. 94, pp. 5451-5473 (2003). [30]C. Y. Liu, Chih Chen, and K. N. Tu, “Electromigration in Sn-Pb solder stripes as a function of alloy compositeon”, Journal of Appiled Physics, Vol. 88, pp. 5703-5709 (2000). [31]C. C. Lu, S. J. Wang, and C. Y. Liu, “Electromigration studies on Sn(Cu) alloy lines”, Journal of Electronic Materials, Vol. 32(12), pp. 1515-1522 (2003). [32]Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in eutectic SnPb solder lines”, Journal of Appiled Physics, Vol. 89, pp. 4332-4335 (2001). [33]J. Y. Choi, S.S, Lee and Y. C. Joo, “Electromigration Behavior of Eutectic SnPb Solder”, Journal of Appiled Physics, Vol. 41, pp. 7487-7490 (2002). [34]Y. C. Hsu, C. K. Chou, and C. Chen, “Electromigration in Pb-free SnAg3.8Cu0.7 solder stripes”, Journal of Appiled Physics, Vol. 98, pp. 033523 - 033523-6 (2005). [35]C. M. Chen, C. C. Huang, C. N. Liao, and K. M. Liou, “Effects of copper doping on microstructural evolution in eutectic SnBi solder stripes under annealing and current stressing”, Journal of Electronic Materials, Vol. 36(7), pp. 760-765 (2007). [36]C. M. Chen, Y. M. Hung, C.H. Lin, “Electromigration of Sn–8 wt.% Zn–3wt.%Bi and Sn–9wt.%Zn–1wt.% Cu solders”, Journal of Alloys and Compounds, Vol. 475, pp. 238-244 (2009). [37]F. Guo, G. Xu, H. He, “Electromigration behaviors in Sb particle-reinforced composite”, Journal of Materials Science, Vol. 44, pp. 5595-5601 (2009). [38]T. C. Chiu, K. L. Lin, “The difference in the types of intermetallic compound formed between the cathode and anode of an Sn–Ag–Cu solder joint under current stressing”, Intermetallics, Vol. 17, pp. 1105-1114 (2009). [39]Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper”, Journal of Materials Research, Vol. 18, pp. 2544-2548 (2003). [40]Y. H. Hsiao, Y. C. Chuang, and C. Y. Liu, “Prevention of electromigration-induced Cu pad dissolution by using a high electromigration-resistance ternary Cu-Ni-Sn layer”, Scripta Materialia, Vol. 54, pp. 661-664 (2006). [41]J. W. Nah, K. Chen, J. O. Suh, and K. N. Tu, “Electromigration Study in Flip Chip Solder Joints”, IEEE Electronic Components and Technology Conference, pp. 1450-1455 (2007). [42]J. W. Nah, J. O. Suh, and K. N. Tu, “Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect”, Journal of Appiled Physics, Vol. 100, 123513-1-5, (2006). [43]廖忠賢,“科儀新知”,第十九卷,第五期,p.43 (1998). [44]V. Randle, in Oxford Guide Book Series, Electron Backscatter Diffraction, Published by Oxford Instruments, Microanalysis Group, p. 3 (1994). [45]V. Randle, in Oxford Guide Book Series, Crystal Orientation Mapping, Published by Oxford Instruments, Microanalysis Group, p. 5 (1998). [46]陳志鵬,“雙相不銹鋼高能束銲件的微觀組織與織構演化之研究”,國立中山大學材料科學研究所博士論文 (2000). [47]A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts , “The Growth of Intermetallic Compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu Solder/Ni Interfaces and the Associated Evolution of the Solder Microstructure”, Journal of Electronic Materials, Vol. 30 , pp. 1157-1164 (2001). [48]L.T. Chen and C.M. Chen, “Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization,” Journal of Materials Research, Vol. 21, pp. 962-969 (2006). [49]Q. L. Yang and J. K. Shang, “Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect”, Journal of Electronic Materials, Vol. 34, pp. 1363-1367 (2005). [50]B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, and B. Zong, “Effect of Rare Earth Element Addition on the Microstructure of Sn-Ag-Cu Solder Joint”, Journal of Electronic Materials, Vol. 34, pp. 217 -224 (2005). [51]S. M. Kuoa and K. L. Lin, “Recrystallization under electromigration of a solder alloy”, Journal of Appiled Physics, Vol. 106, pp. 023514-1- 4 (2009). [52]B. Arfaei, Y. Xing, J. Woods, J. Wolcott, P. Tumne, P. Borgesen, and E. Cotts,“The effect of Sn grain number and orientation on the shear fatigue life of SnAgCu solder joints” Electronic Components and Technology Conference 58th, pp. 459-465 (2008). [53]T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, “Electromigration-induced microstructure evolution in tin studied by synchrotron X-ray microdiffraction”, Applied Physics Letters , Vol. 85, pp. 2490-2492 (2004). [54]A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao,“Electromigration-induced Grain Rotation in Anisotropic Conducting Beta Tin”, Applied Physics Letters, Vol. 86, pp. 241902-1-3 (2005).
摘要: 在無鉛化的趨勢下,傳統Sn-Pb銲料已逐漸被取代,其中Sn-3wt.%Ag-0.5wt.%Cu(SAC305)在各種性質的測試上均和傳統Sn-Pb銲料類似,且已為業界所量產且廣泛使用,是相當具有潛力的無鉛銲料,但由於其熔點(217℃)比傳統錫鉛合金(183℃)高,相關的製程參數需要調整,相對成本也會提高,而在銲料中加入微量元素可以改變銲點性質,其中添加Bi可降低其熔點。本研究首先選擇添加3wt.%Bi於SAC305中,經迴焊後進行通電測試,研究當環境溫度120℃與不同電流密度的驅動下,Sn-3wt.%Ag-0.5wt.%Cu-3wt.%Bi銲料之電遷移行為。施加電流應力1.0×104 A/cm2於試片時,銲料內之微結構僅微小改變,在陽極端之銲料與銅電極界面有些許distributed Cu6Sn5相產生。當電流密度提升至3.9×104 A/cm2和5.0×104 A/cm2後,高密度的distributed Cu6Sn5相橫貫整個銲點,使其微結構產生劇烈的改變。陽極端界面處因Sn-rich相、Bi-rich相、distributed Cu6Sn5相的累積而產生突起,其對面陰極端周圍除了銲料層內有孔洞的生成,銅電極溶解的情況也頗為嚴重。為了更明瞭Bi的添加對銲點電遷移行為之影響,將鉍的添加量增加至5~10wt.%後,發現銲料層內所含的鉍相會產生方向性的析出,而大部份在陽極端的突起物由先前Sn組成改由Bi所取代,其界面也因為孔洞的生成,使得底部介金屬化合物外露。大量且迅速生成的distributed Cu6Sn5相,以及受電遷移效應而遷移的Bi和Sn都將於此篇研究中探討。另外,自行製備了有別於上述薄膜試片之立體結構,去調整凸塊下金屬層厚度並觀察其對電遷移行為之影響。
For the tendency of lead-free solder, the traditional SnPb solder has been replaced. Sn3Ag0.5Cu is similar with the traditional SnPb solder for many property tests. It has been the most popular Pb-free solder for consumer electronics packaging. But its melting point(217℃) is higher than the conventional Sn37Pb solder(183℃), which makes direct application of this solder in the traditional reflow process more inconvenient and difficult. Addition of a fourth element to SnAgCu solder is a method commonly used to improve the solder's physical or chemical properties. It was reported that a small amount addition of Bi to SnAgCu solder can reduce the melting point. The electromigration behavior of a Sn3Ag0.5Cu3Bi solder stripe between two Cu electrodes under current stressing at various current densities has been investigated at temperature of 120℃. After current stressing at a density of 1.0×104A/cm2, the solder matrix exhibited slight microstructural change as well as the formation of a distributed Cu6Sn5 phase near the anode-side solder/Cu interface. Upon increasing the current density to 3.9×104A/cm2 and 5.0×104A/cm2, high density of distributed Cu6Sn5 phase was formed across the entire solder stripe, resulting in pronounced microstructural change of the solder. Hillocks were also formed near the anode-side interface due to accumulation of Sn-rich phase, Bi-rich phase, and distributed Cu6Sn5 phase, while voids were formed in the solder matrix and at the opposite cathode side. For knowing the effect of solder microstructure with adding Bi more clearly, we will increase the addition of Bi to 5~10wt.%. Then, we found the Bi precipitate align regularly, and most of the extrusion is replaced by Bi instead of Sn at the anode side. We also found the formation of voids there, which would cause the bottom intermetallic compound exposed. The mechanisms of formation of the distributed Cu6Sn5 phase and migration of Bi and Sn are discussed. Beside, we made a 3D structure different from thin film sample, and adjusted the height of Cu in under bump metallization to observe electromigration behavior.
其他識別: U0005-0408201114534200
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.