Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3864
標題: 新型發光二極體固晶材料之開發及可靠度分析
Development and reliability analysis of novel die attach material for light emitting diodes
作者: 劉柏宏
Liu, Po-Hung
關鍵字: die attach
固晶材料
carbon nanotube
thermal resistance
奈米碳管
熱阻
出版社: 化學工程學系所
引用: [1] 張祐銜,劉正毓,「發光二極體的封裝技術」,科學發展,435期, 第6-11頁 (2009)。 [2] 林志浩,「從LED Packaging 2008看LED封裝材料的發展趨勢」,材料科學網。 [3] 黃振東,「LED封裝及散熱基板材料之現況與發展」,工業材料雜誌, 第70-81頁 (2006)。 [4]F. Wall, P. Martin and G. Harbers, "High Power LED Package Requirement", Third International Conference on Solid State Lighting, Proceeding of SPIE, Vol. 5187, pp. 85-92, (2004). [5]Optoelectronics Industry Development Association (OIDA), Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002. [6]F. P. McCluskey, M. Dash, Z. Wang and D. Huff, "Reliability of high temperature solder alternatives", Microelectronics Reliabilty, Vol. 46, pp. 1910-1914, (2006). [7]H. H. Kim, S. H. Choi, S. H. Shin, Y. K. Lee, S. M. Choi and S. Yi, "Thermal transient characteristics of die attach in high power LED PKG", Microelectronics Reliabilty, Vol. 48, pp. 445-454, (2008). [8]J. Y. H. Chia, B. Cotterell, T. C. Chai, "The mechanics of the solder ball shear test and the effect of shear rate", Materials Science and Engineering, Vol. 417, pp. 259–274, (2006). [9]V. Sze’kely, "Enhancing reliability with thermal transient testing", Microelectronics Reliability, Vol. 42, pp. 629–640, (2002). [10]M. Yunus, K. Srihari, J.M. Pitarresi, A. Primavera, "Effect of voids on the reliability of BGA/CSP solder joints", Microelectronics Reliability, Vol. 43, pp. 2077–2086, (2003). [11] 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,高立圖書 (2004)。 [12] 潘錫明,「認識發光二極體」,科學發展,第435期,6-11頁, (2009)。 [13] J. Petroski, "Thermal challenges facing new generation light-emitting diodes (LEDs) for lighting applications", Solid State Lighting II, Vol. 4776, pp. 215–222, (2002). [14] 黃振東,「LED封裝及散熱基板材料之現況與發展」,技術專題, 第231期,第70-81頁 (2006)。 [15] N. Narendran and Y. Gu, "Life of LED-Based White Light Sources", Journal of Display Technology, Vol. 1, pp.167–171, (2005). [16]H. H. Kim, S. H. Choi, S. H. Shin, Y. K. Lee, S. M. Choi, S. Yi, "Thermal transient characteristics of die attach in high power LED PKG", Microelectronics Reliability, Vol. 48, pp.445–454, (2008). [17]K. Zhang, G. W. Xiao, C. K. Y. Wong, H. W. Gu, M. M. F. Yuen, P. C. H. Chan, B. Xu, "Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip Technology", 2005 Electronic Components and Technology Conference, pp.60–65, (2005). [18] C. J. Chen, C. M. Chen, R. H. Horng, D. S. Wuu, J. S. Hong, "Thermal Management and Interfacial Properties in High-Power GaN-Based Light-Emitting Diodes Employing Diamond-Added Sn-3 wt.%Ag-0.5 wt.%Cu Solder as a Die-Attach Material", Journal of Electronic Materials, Vol. 39, No. 12, 2010. [19] Y. Xu, C. K. Leong, D.D.L. Chung, "Carbon Nanotube Thermal Pastes for Improving Thermal Contacts", Journal of Electronic Materials, Vol. 36, No. 9, 2007. [20] C. K. Leong, D.D.L. Chung, "Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance", Carbon, Vol. 41, pp. 2459–2469, (2003). [21] R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, L. M. Bharadwaj, “Comparative study of carbon nanotube dispersion using surfactants”, Journal of Colloid and Interface Science, Vol. 328, pp.421-428, 2008. [22] Márta Rencz, “Testing Interface Thermal Resistance”, 9th Electronics Packaging Technology Conference, pp. 272-277, 2007. [23] S. Gao, J. Hong, S. Shin, Y. Lee, S. Choi, S. Yi, “Design Optimization on the Heat Transfer and Mechanical Reliability of High Brightness Light Emitting Diodes (HBLED) Package”, Electronic Components and Technology Conference, pp. 798-803, 2008. [24] R. J. Coyle, P. P. Solan, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements”, IEEE/CPMT Int''l Electronics Manufacturing Technology Symposium, pp. 168-177, 2000. [25] J. Y. H. Chia, B. Cotterell, T. C. Chai, “The mechanics of the solder ball shear test and the effect of shear rate”, Materials Science and Engineering, Vol. 417, pp. 259-274, 2006. [26] S. S. Ha, J. K. Jang, S. O. Ha, J. W. Yoon, H. J. Lee, J. H. Joo, Y. H. Kim, S. B. Jung, “Effect of multiple reflows on interfacial reaction and shear strength of Sn–Ag electroplated solder bumps for flip chip package”, Microelectronic Engineering, Vol. 87, pp. 517-521, 2010. [27] V. Székely, “Enhancing reliability with thermal transient testing”, Microelectronics Reliability, Vol. 42, pp.629-640, 2002. [28] X. Huang1, S.-W. R. Lee, C. C. Yan, S. Hui, “Characterization and analysis on the solder ball shear testing condition”, Proc. 51st Electr. Comp. Technol. Conf., Orlando, FL, USA, pp. 1065-1071, 2001. [29] R. J. Coyle, P. P. Solan, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements”, IEEE/CPMT Int''l Electronics Manufacturing Technology Symposium, pp. 168-177, 2000. [30] Y.C. Chan, A. C.K. So, J.K.L. Lai, “Growth kinetic studies of Cu–Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints”, Materials Science and Engineering B, Vol. 55, pp.5-13, 1998. [31] J. Y. H. Chia, B. Cotterell, T. C. Chai, “The mechanics of the solder ball shear test and the effect of shear rate”, Materials Science and Engineering A, Vol. 417, pp. 259-274, 2006. [32] C.W. Chang, Q.P. Lee, C.E. Ho, C.R. Kao, ”Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples”, Journal of Electronic Materials, Vol. 35, No. 2, 2006. [33] 陳佳汝,「高功率發光二極體之熱管理與界面反應」,碩士論文,國立中興大學碩士論文,台中(2010)。 [34] 王建評、黃勝邦,「LED 封裝界面熱阻量測技術」,工業材料雜誌,第266期, 第87-91頁(2009)。 [35] V. Szbkely, T. V. Bien, “Fine structure of heat flow path in semiconductor devices: A measurement and identification method”, Solid-Slate Electronics, Vol. 31, No. 9, pp. 1363-1368, 1988. [36] M. Rencz, V. Szbkely, A. Morelli, C. Villa, “Determining Partial Thermal Resistances with Transient Measurements, and Using the Method to Detect Die Attach Discontinuities”, 18th IEEE Semi-Them Symposium, pp. 15-20, 2002. [37] G. Farkas, Q. V. V. Vader, A. Poppe, G. Bognár, “Thermal Investigation of High Power Optical Devices by Transient Testing”, IEEE Transactions On Components And Packaging Technologes, Vol. 28, no. 1, march 2005. [38] 萊普士光電科技,http://www.lightports.com/,2009年12月。 [39] X. Huang, S. W. R. Lee, C. C. Yan, S. Hui, “ Characterization and analysis on the solder ball shear testing condition”, Proc. 51st Electr.Comp. Technol. Conf., Orlando, FL, USA, pp. 1065-1071, 2001.
摘要: 在最近幾年的照明技術發展中,發光二極體(light emitting diodes, LED) 的發展是一個重要的突破。但由於LED 之能源輸入僅有40~50% 轉換為光能,其餘都轉換為熱能,而熱能對於電子產品來說是一個極大的缺點,不僅使其無法有效的發揮,更會造成其壽命的減短。因此,如何有效的散熱是一個重要的課題。目前市面上普遍使用的固晶材料為銀膠,其熱傳導係數僅10~20 W/mK,對於現今發展的高功率LED 不具有太大的散熱效果。為了因應現在發展的高功率LED 的散熱問題,本研究使用商用錫膏,Sn-3wt.%Ag-0.5wt.%Cu(SAC305),其熱傳導係數約為60W/mK,來做為封裝中LED 的固晶層。 雖然商用錫膏的熱傳導係數比起銀膠來的大,其實際之降溫效果也有限。有鑑於此,本研究試將高熱傳係數的奈米碳管(3000~3500W/mK)加入商用錫膏,內以不同比例混和,並將其網印至散熱基板上封裝。由紅外線熱影像分析儀及熱暫態分析儀數據得知,此複合銲料有效將表面溫度以及總熱阻抗值降低。由此證明固晶材料中加入奈米碳管可以有效改善LED 散熱的問題。 為了瞭解LED 固晶層在熱阻分佈圖中的分布區段,將熱阻圖分為三部分,分別為LED chip、固晶層以及散熱基板,其中固晶層為主要的討論部分。在LED封裝過程中,元件與元件接著處可能會有空氣存在於其中,造成LED chip 與固晶層以及固晶層與散熱基板之間的界面會有接觸熱阻的產生。 在電子元件封裝上,機械可靠度決定電子產品的壽命。因此本研究使用錫球推力機做LED機械性質測試,了解純SAC305 以及以不同比例奈米碳管混和的SAC305機械可靠度的關係,並由Scanning Electron Microscopy(SEM)觀察其斷裂型態。
In recent years, the light emitting diode is a crucial breakthrough in the technology of illumination development. However, there are only 40~50% of the input power converting to light and the rest convert to heat. The heat is a great defect for electronic product because it might make LEDs not work efficiently and shorten the lifespan of LEDs. Hence, how to dissipate the heat from LED is an important lesson. In the market, the sliver paste which thermal conductivity coefficient is only 10~20 W/mK is commonly used as die attach material, but it may be not suitable for the high power LED. For high power LEDs, we use Sn-3wt.%Ag-0.5wt.%Cu (SAC305) which thermal conductivity coefficient is about 60 W/mK for die attach material in LED fabrication. Although the thermal conductivity coefficient of SAC305 is higher than silver paste, there are only limiting ability for lowering the temperature on LED surface. To overcome this problem, we try to mix SAC305 with different ratio of carbon nanotubes (3000~3500W/mK), and then screen-print it on heat sink. Based on the infrared image and thermal resistance analysis, this composite solder can lower the surface temperature and the total thermal resistance of LED, which confirm that the composite solder is useful in dissipating heat. We separated the total thermal resistance into three parts, LED, die attach material, and heat sink, respectively, to understand the partial thermal resistance of the LED device. In the fabrication of LED, there might exist voids at the interfaces of LED/die attach material and die attach material/heat sink, which would cause the contact thermal resistance. In the fabrication of LED, the mechanic strength decides the life of LED device. In our research, we tested the mechanic strength of different die attach materials. And then, we made the cross sections of the die attach layers to observe the cross-sectioned microstructure using the scanning electron microscopy(SEM).
URI: http://hdl.handle.net/11455/3864
其他識別: U0005-0408201115061700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0408201115061700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.