Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3869
標題: 聚吡咯/石墨烯奈米複合薄膜作為電化學感測器之探討
Electrochemical sensors based on polypyrrole/graphene nanocomposite
作者: 林川勝
Lin, Chuan-Sheng
關鍵字: polypyrrole
聚吡咯
graphene
electrochemical sensors
石墨烯
電化學感測器
出版社: 化學工程學系所
引用: [1] H. Li, Q. Wang, J. Xu, W. Zhang, L. Jin, Sensors and Actuators B: Chemical, 87 (2002) 18-24. [2] C.P. Sousa, A.S. Polo, R.M. Torresi, S.I.C. de Torresi, W.A. Alves, Journal of Colloid and Interface Science, 346 (2010) 442-447. [3] B.J. Sanghavi, A.K. Srivastava, Electrochimica Acta, 55 (2010) 8638-8648. [4] J. Song, J. Yang, J. Zeng, J. Tan, L. Zhang, Sensors and Actuators B: Chemical, 155 (2011) 220-225. [5] Ascorbic acid, Wikipedia [6]行政院衛生署http://www.doh.gov.tw/CHT2006/index_populace.aspx [7] Uric acid, Wikipedia [8]細谷龍男,奈良昌治,尿酸值健康診療,大展出版社,(2004) [9]林助雄,痛風症,文笙書局,(1983) [10]李信興,廖貴聲,痛風,書泉出版社,(2002) [11]C.C. Harley, A.D. Rooney, C.B. Breslin, Sensors and Actuators B: Chemical, 150 (2010) 498-504. [12] V. Hefco, K. Yamada, A. Hefco, L. Hritcu, A. Tiron, T. Nabeshima, European Journal of Pharmacology, 475 (2003) 55-60. [13] D.L. Robinson, B.J. Venton, M.L.A.V. Heien, R.M. Wightman, Clinical Chemistry, 49 (2003) 1763-1773. [14] R.M. Wightman, L.J. May, A.C. Michael, Analytical Chemistry, 60 (1988) 769A-779A. [15] A. Barbeau, F.H. McDowell, L-DOPA and PARKINSONISM, F.A. DAVIS COMPANY, Canada, 1970. [16] M. Pufulete, Chem. Br., (1997) 33-37. [17]G. Natta, G. Mazzanti, P. Corradini, Cl. Lince., Mat. Natur., 25, 3, 1958. [18]H. Shirakawa , S. Polym. J., 2, 231, 1971. [19]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem.Soc. Chem. Commun., 1098, 1977. [20]B. Wessling, Synth. Met., 45, 119, 1991. [21]A. J. Heeger, In: Skotheim, T.A. (Ed.), Handbook of Conducting Polymers, vol. II. Marcel Dekker, New York, p. 729 and references therein, 1986. [22]S. P. Armes, Synth. Met., 20, 365, 1987. [23]J. Zhang, Y. She, B. Lu, Y. Zhou, K.F. Chin, J. Polym. Sci., 11, 334, 1993. [24]E. T. Kang, K. G. Neoh, Y. K. Ong, K. L. Tan, B. T. G. Tan, Macromolecules, 24, 2822, 1991. [25]E.T. Kang, K.G. Neoh, T. Matsuyama, H. Yamaoka, Polym. Commun., 29, 201, 1988. [26]E. T. Kang, H. C. Ti, K. G. Neoh, T. C. Tan, Polym. J., 20, 399, 1988. [27]S. Rapi, V. Bocchi, G.P. Gardini, Synth. Met., 24, 217, 1988. [28]H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers. Vol 2, Wiley, New Work, 1997. [29]Y. C. Luo, J. S. Do, Biosens. Bioelectron., 20, 15, 2004. [30]Lai, E. K. W., P. D. Beattie, F. P. Orfino, E. Simon, Electrochim. Acta., 44, 2559, 1999. [31]A. F. Diaz, J. I. Castillo, J. A. Logan and W. Y. Lee, 1981, ’’Electrochemistry of Conducting Polypyrrole Films’’,J. Electroanal. Chem, Vol 129, p.115. [32]G. A. Snook, P. Kao, A. S. Best, J. Power Sources, 196, 1, 2011. [33]A. K. Geim, K. S. Novoselov, Nature Mater., 26, 183, 2007. [34]H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 318, 162, 1985. [35]S. Iijima, Nature, 354, 56, 1991. [36]J. Wang, M. Musameh, Y. Lin, J. Am. Chem. Soc., 125, 2408, 2003. [37]C. D. Reddy, S. Rajendran, K. M. Liew, Nanotechnology, 17, 864, 2006. [38]Y. Geng, S. J. Wang, J. K. Kim, J. Colloid. Interf. Sci., 336, 592, 2009. [39]P. R. Wallace, The band theory of graphite. Phys. Rev, 71, 622, 1947. [40]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,1 A. A. Firsov, Science., 306, 666, 2004. [41]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett., 9, 30, 2009. [42]A. V. Raygani, H. Ghaneialvar, Z. Rahimi, H. Nomani, M. Saiedi, F. Bahrehmand, H. Tavilani, T. Pourmotabbed, Sens. Actuators, B, 150, 301, 2010. [43]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herreraalonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem.B, 110, 8535, 2006. [44]W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 80, 1339, 1958. [45]M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solıs-Fernandez, A. Martı’nez-Alonso, and J. M. D. Tascon, J. Phys. Chem. C, 114, 6426, 2010. [46]J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater., 22, 2213, 2010 [47]G. K. Ramesha, S. Sampath, J. Phys. Chem. C, 113, 7985, 2009. [48]N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater., 18, 3506, 2008. [49]J. F. Wu, M. Q. Xu, G. C. Zhao, Electrochem. Commun., 12, 175, 2010. [50]C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron, 25, 1070, 2010. [51]Roe J H ,Biological chemistry,236 (1961) 1611-1613. [52]Emadi-konjin P,Verjee Z,Levin A V,Adeli K, Clinical Biochemistry,38(2005) 450-456. [53]何敏夫,臨床化學,合計圖書出版社,1999 [54]Volotovsky V,Kim N,Analytic Chimica Acta,359(1998) 143-148 [55]吳霞,童裳倫,蘇本玉,黃方,楊景和,熒光光度法測定多巴胺[J].分析化學.1999, 27 (9):1069 [56]中臺科技大學-健康科學http://chs.ctust.edu.tw/front/bin/home.phtml [57] 石志格,基於多壁碳納米管/聚合物複合膜修飾電極測定多巴胺、抗壞血酸和尿酸,上海師範大學,2011 [58] A. J. Bard, I. R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000 [59] D. R. Crow, Principle and Applications of Electrochemistry,高立,1998 [60] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon., 42, 2929, 2004. [61] W. C. Chen, T. C. Wen, H. S. Teng, Electrochim. Acta, 48, 641, 2003. [62] K.S. Booksh, B.R. Kowalski, Anal. Chem., 782A, 66, 1994.
摘要: 本研究成功的利用電化學的方式製備出奈米複合薄膜應用於電化學感測器上,以電化學聚合方式將聚吡咯(polypyrrole, PPy)薄膜修飾於ITO電極上,再將PPy及石墨烯氧化物(graphene oxide, GO)以電化學聚合方法將其同時修飾於ITO電極上,最後利用電化學還原法將GO-PPy還原成還原氧化石墨(reduced graphene GO, rGO-PPy)。經由掃描式電子顯微鏡可發現GO與rGO確實與PPy共聚合於ITO電極上。 第一部分利用循環伏安法與安培法探討敗壞血酸的電化學行為於rGO-PPy奈米複合薄膜修飾電極。在循環伏安法中,與未修飾電極與rGO-PPy修飾電極相較,rGO-PPy有較小的氧化電位與較大的電流訊號。顯示rGO-PPy有良好的電催化行為。利用安培法偵測敗壞血酸,有不錯的電化學效能參數:靈敏度0.744 A M-1 cm-2,偵測極限 13 μM。 第二部分利用循環伏安法與安培法探討尿酸的電化學行為於rGO-PPy奈米複合薄膜修飾電極。在循環伏安法中,與未修飾電極與rGO-PPy修飾電極相較,rGO-PPy有較小的氧化電位與較大的電流訊號。顯示rGO-PPy有良好的電催化行為。利用安培法偵測尿酸,有不錯的電化學效能參數:靈敏度0.492 A M-1 cm-2,偵測極限 7 μM。 第三部分主要在探討rGO-PPy奈米薄膜修飾於ITO電極上作為多巴胺化學感測器之應用。利用循環伏安法與安培法來研究所製備出之rGO-PPy/ITO對於多巴胺之電化學特性。將其與未修飾之ITO比較發現rGO-PPy/ITO在多巴胺的電化學行為均優於ITO,表示rGO-PPy/ITO奈米薄膜對於多巴胺具有良好的電催化效果。利用安培法偵測多巴胺,有不錯的電化學效能參數:靈敏度1.264 A M-1 cm-2,偵測極限 3 μM。
A nanocomposite film consisted of graphene oxide (GO) and polypyrrole (PPy) was successfully synthesized by electropolymerization which the GO and PPy were deposited on the ITO electrode simultaneously. The GO-PPy could be reduced through electrochemical reduction method to obtain reduced graphene oxide (rGO)-PPy. The morphology of PPy, GO-PPy and rGO-PPy nanocomposite films were characterized via scaning electron microscope (SEM). The first part is the introduction of electrochemical behavior of ascorbic acid by using rGO-PPy nanocomposite modified ITO electrode with cyclic voltammetry and amperometry. In cyclic voltammetric responses, the enhanced current response and the lower oxidation potential were obvious evidences for the electrocatalytic ability of rGO-PPy toward AA oxidation, which suggested a diffusion-controlled process for the electrochemical reaction. The determination of AA at the rGO-PPy nanocomposite modified ITO electrode with amperometry displayed a high sensitivity of 0.744 A M-1 cm-2 and a low detection limit of 13 μM . The second part is the introduction of electrochemical behavior of uric acid by using rGO-PPy nanocomposite modified ITO electrode with cyclic voltammetry and amperometry. In cyclic voltammetric responses, the enhanced current response and the lower oxidation potential were obvious evidences for the electrocatalytic ability of rGO-PPy toward UA oxidation, which suggested a diffusion-controlled process for the electrochemical reaction. The determination of UA at the rGO-PPy nanocomposite modified ITO electrode with amperometry displayed a high sensitivity of 0.492 A M-1 cm-2 and a low detection limit of 7 μM . In the third part, this study demonstrates that an efficient electrode for electrocatalytic detection of dopamine (DA), can be directly obtained using rGO-PPy nanoparticles onto the surface of ITO.Cyclic voltammetry and amperometry were used to investigate the electrochemical behaviors of DA at the rGO-PPy coated ITO electrode. Compared to a bare ITO electrode, rGO-PPy coated ITO electrode exhibits the abilities to lower the electrooxidation potential and to raise the current responses of DA.The determination of DA at the rGO-PPy nanocomposite modified ITO electrode with amperometry displayed a high sensitivity of 1.264 A M-1 cm-2 and a low detection limit of 3 μM .
URI: http://hdl.handle.net/11455/3869
其他識別: U0005-0607201214064300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607201214064300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.