Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3871
標題: 胺化改質多層壁奈米碳管/二氧化鈦奈米複合材料薄膜作為染料敏化太陽能電池之探討
Dye-sensitized solar cells based on P-phenylenediamine treated multiwalled carbon nanotubes-titanium dioxide nanocomposite photoelectrode
作者: 許峻綜
Hsu, Chun-Tsung
關鍵字: carbon nanotubes
奈米碳管
P-phenylenediamine
titanium dioxide
dye-sensitized solar cells
對苯胺
二氧化鈦
染料敏化太陽能電池
出版社: 化學工程學系所
引用: [1] M. Grätzel, Nature, 414, 338, (2001). [2] 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86. [3] M. Grätzel, Nature 2000, (403), 363. [4] B. O’Regan, M. Grätzel, Nature 353, (1991), 737. [5] 楊素華、蔡泰成, “太陽能電池篇”, 科學發展雜誌, 2005年6月, 390期. [6] Mark D. Ellison, Patrick J. Gasda, J. Phys. Chem. C 2008, (112), 738. [7] Shu-Kun Cui, Dao-Jun Guo, J. Colloid Interface Sci. 2009, (333), 300. [8] M.A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovolt: Res. Appl 16, (2008), 61. [9] N. B. Chaure, J. Youang, A. P. Samantilleke, Sol. Energy Mater. Sol. Cells 81, (2004), 125 [10] M. K. Nazzeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123, (2001), 6382 [11] Gerald Oster, Judith S. Bellin, Robert W. Kimball, Malcolm E. Schrader, J. Am. Chem. Soc. 81, (1959), 5095. [12] 馬振基, “有機與塑膠太陽能電池”, 五南, 台北市, 第三章, 民96. [13] R. Argazzi﹐Inorg. Chem. 33, (1994), 5741 [14] K. Finnie, J. Bartlett, J. Woolfrey﹐Langmuir 14, (1998), 2749 . [15] Md. Nazeeruddin﹐Langmuir 16, (2000), 8525 [16] K .Murakoshi﹐J.Electroanal. Chem. 396, (1995), 27. [17] K. Sayama, H. Sugihara, H. Arakawa﹐Chem. Mater. 10, (1998), 3825. [18] C. Klein, Md. K. Nazeeruddin, D. D. Censo﹔P. Liska, M.Grätzel﹐Inorg. Chem. 43, (2004), 4216. [19] Y. Liu, A. Hagfeldt, X.Xiao, S.Lindquist﹐Sol. Energy Mater.Sol. Cells 55, (1998), 267. [20] K. Hara﹐Sol. Energy Mater. Sol. Cells 70, (2001), 151 . [21] U. Bach, D. Lupo, M Grätzel, Nature 395, (1998), 583. [22] N. Papageorgiou, W. F. Maier, M. Grätzel, J. Electrochem. Soc. 144, (1997), 876 [23] A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells 44, (1996), 99 [24] E. Ramasamya, W. J. Leea, D. Y. Leea , J. S. Songa, Electrochem. Commun. 10, (2008), 1087 [25] K. Vinodgopal, P. V. Kamat, Environ. Sci. Technol. 29, (1992), 841. [26] S. Hotchandani, P. V. Kamat, Chem. Phys. Lett. 191, (1992), 320. [27] I. Shiyanovskaya, M. J. Hepel, Electrochem. Soc. 145, (1998), 3981. [28] D. Ulrike, Surf. Sci. Rep. 48, (2003), 58. [29] M. A. Fox, M. Y. Dulay, Chem. Rev. 93, (1993), 341. [30] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95, (1995), 735. [31] M. R. Hoffmann, S. T. Martin, W. Choi, Chem. Rev. 95, (1995), 69. [32] P. Serp, P. Kalck, R. Feurer, Chem. Rev. 102, (2002), 3085. [33] K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, Chem. Mater. 16, (2004), 1165. [34] Y. Ohko, K. Hashimoto, and A. Fujishima, J. Phys. Chem. A 101, (1997), 8057. [35] C. Anderson , A. J. Bard, J. Phys. Chem. 99, (1995), 9882. [36] Alex H.C. Chan, Chak K. Chan, John P. Barford, John F. Porter, Water Research 37, (2003), 1125. [37] M. Cho, H. Chung, W. Choi, J. Yoon, Water Research 38, (2004), 1069. [38] S. Horikoshi, H. Hidaka, N. Serpone, Environ. Sci. Technol. 36, (2002), 1357. [39] Q. Sun, Y. Jiang, Z. Jiang, L. Zhang, X. Sun, J. Li, Ind. Eng. Chem. Res. 48, (2009), 4210 [40] Gerald Oster, Judith S. Bellin, Robert W. Kimball, Malcolm E. Schrader, J. Am. Chem. Soc. 81, (1959), 5095. [41] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69, (1965), 641 [42] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69, (1965), 647. [43] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69, (1965), 2834. [44] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69, (1965), 2842 [45] Kearns, J. Am. Chem. Soc. 89, (1967), 5455 [46] Kearns, J. Am. Chem. Soc. 89, (1967), 5456 [47] R.D. McConnell, Renew. Sust. Energ. Rev. 5, (2002), 273 [48] M. Grätzel, J. Photochem. Photobiol. C-Photochem. Rev. 4, (2003), 145 [49] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 1976, (261), 402. [50] K. MoHammad, P. Nazeeruddin, R. Thierry, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123, (2001), 1613 [51] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 127, (2005), 16835 [52] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, (2006), L638 [53] J. Ferber, J. Luther, Sol. Energy Mater. Sol. Cells 54, (1998), 265 [54] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, J. Phy.s. Chem. B 107, (2003), 14336 [55] Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordin. Chem. Rev. 248, (2004), 1381 [56] T. Y. Tsai, S. Y. Lu, Electrochem. Commun. 11, (2009), 2180 [57] M. Grätzel, Inorg. Chem. 44, (2005), 6841 [58] G. J. Meyer, Inorg. Chem. 44, (2005), 6582 [59] T. A. Hemier, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phy.s. Chem. A 104, (2000), 4256 [60] M. Grätzel, J. Photochem. Photobiol. A 164, (2004), 3 [61] P. V. Kamat, M. Haria, S. J. Hotchandani, J. Phys. Chem. B 108, (2004), 5166 [62] D. J. Sirbuly, M. Law, H. Yan, P. Yang, J. Phys. Chem. B 109, (2005), 15190 [63] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 5, (2005), 191 [64] M. Adachi, Y. Murata, I. Okada, S.Yoshikawa, J. Electrochem. Soc. 150, (2003), G488 [65] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, (2005), 455 [66] V. I. Klimov, J. Phys. Chem. B 110, (2006), 16827 [67] E. Galpppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. J. Boschloo, J. Phys. Chem. B 110, (2006), 16159 [68] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 6, (2006), 215 [69] T. Durkop, S. A. Getty, E. Cobas, M.S. Fuhrer,Nano Lett. 4, (2004), 35 [70] R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92, (2009), 289 [71] A. Kongkanand, R. M. Dominguez, P. V. Kamat, Nano Lett. 7, (2007), 676 [72] A. Kongkanand, P. V. Kamat, ACS nano 1, (2007), 13 [73] Kun-Mu Lee, Chih-Wei Hu, Hsin-Wei Chen, Kuo-Chuan Ho, Sol. Energy Mater. Sol. Cells, 92, (2008), 1628 [74] C. Y. Yen, Y. F. Lin, S. H. Liao, C. C. Weng, C. C. Huang, Y. H. Hsiao, C. C. M Ma, M. C. Chang, H. Shao, M. C. Tsai, C. K. Hsieh, C. H. Tsai, F. B. Weng, Nanotechnology 19, (2008), 375305 [75] Song-Rim Jang, R. Vittal, Kang-Jin Kim, Langmuir (2004), 20, 9807 [76] Sun-Lae Kim, Song-Rim Jang, R. Vittal, Jiwon Lee Kang-Jin Kim, J. Appl. Electrochem. (2006), 36, 1433 [77] Rice University: Rick Smalley’s Group Home Page-Image Gallery. http://smalley.rice.edu/index.cfm [78] M. C. Hersam, Nat. Nanotechnol. 3, (2008), 387 [79] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363, (1993), 605. [80] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nash, Chem. Phys. Chem. 2, (2001), 78. [81] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 68, (1992), 1579. [82] R.Saito, M. Fujita, G. Dresselhaus, M. S. Dresslhaus, Appl. Rev. Lett. 60, (1992), 2204. [83] J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391, (1998), 59. [84] J. E. Fischer, Acc. Chem. Res. 35, (2002), 1079. [85] M. Terrones, W. K. Hsu, H.W. Kroto, D. R. M. Walton, Top. Curr. Chem. 1991, (1998), 1. [86] J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, (1999), 2514. [87] M. A. Osman, D. Srivastava, Nanotechnology 12, (2001), 21. [88] M. R. Falvo, G. J. Clary, R. M. II Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature 277, (1997), 1971. [89] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, (1966), 678. [90] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277, (1997), 1971. [91] M.R. Pederson, J.Q. Broughton, Phys. Rev. Lett. 69, (1992), 2689. [92] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature 386, (1997), 377. [93] G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, W. Z. Li, J. Power Sources 75, (1998), 175. [94] F. Beguin, V. A. Nalimova, D. E. Sklovsky, G. N. Bondarenko, H. Alvergnat-Gaucher, S. Bonnamy, Synth. Met. 88, (1997), 89. [95] A. Hirsch, Angew. Chem. Int. Ed. 41, (2002), 1853. [96] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science 280, (1998), 1253. [97] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc. 123, (2001), 10699. [98] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett. 321, (2000), 292. [99] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B 103, (1999), 4318. [100] P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett. 310, (1999), 367. [101] M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science 297, (2002), 593. [102] M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, (2001), 265. [103] J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B 108, (2002), 11317. [104] Y.C. Tsai, C.C. Chiu, M.C. Tsai, J.Y. Wu, T.F. Tseng, T.M. Wu, S.F. Hsu, Carbon 45, (2007), 2823 [105] M.A.B. Christopher, A.M.O. Brett, Electrochemistry Principles, Methods, And Application, Oxford New York, 1993. [106] C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol. A: Chem. 159, (2003), 33 [107] M.C. Bernard, H. Cachet, P. Falaras, A. Hugot-Le Goff, M. Kalbac, I. Lukes, N.T. Oanh, T. Stergiopoulos, I. Arabatzis, J. Electrochem. Soc. 150, (2003), E155. [108] Yinhua Jiang, Yun Yan, Wenli Zhang, Liang Ni, Yueming Sun, Hengbo Yin, Appl. Surf. Sci. 257, (2011), 6583 [109] Yaoming Xiao, Jihuai Wu, Gentian Yue, Guixiang Xie, Jianming Lin, Miaoliang Huang, Electrochim. Acta 55, (2010), 4573 [110] Song-Rim Jang, Min-Jung Choi, R. Vittal, Kang-Jin Kim, Sol. Energy Mater. Sol. Cells 91, (2007), 1209 [111] Hee-Sun Uam, Young-Sam Jung, Yongseok Jun, Kang-Jin Kim, J. Photochem. Photobiol., A 212, (2010), 122
摘要: 本研究是使用以共價鍵的方式,藉由P-phenylenediamine改質多層壁奈米碳管(multi-walled carbon nanotubes, MWCNTs) ,使之帶有親水性官能基,進而使其能分散於二氧化鈦(titanium dioxide, TiO2, P25)奈米顆粒水溶液中,並利用Polyethylene glycol (PEG)提升薄膜的成膜性。經由場發射掃描式電子顯微鏡(field emission scanning electron microscopy, FESEM)的微觀表面形貌分析,可以清楚觀察到摻混奈米碳管前後,光電極的表面結構由較為緊實變成較為孔洞化,而改質後的多層壁奈米碳管確實可以在TiO2中均勻分散開來。之後,我們將分散完全的NH2-MWCNTs-TiO2(P25)複合材料修飾於FTO導電玻璃上,並依序改變NH2-MWCNTs的含量,及NH2-MWCNTs-TiO2(P25)複合材料的薄膜厚度,輔以掃描式電子顯微鏡來確認NH2-MWCNTs於TiO2 matrix 中的分佈情況及NH2-MWCNTs-TiO2(P25)複合材料的整體膜厚。並透過Ultraviolet-Visible spectroscopy來分析摻混NH2-MWCNTs、酸化碳管與原始TiO2薄膜電極對染料吸附效應的影響。交流阻抗測試則顯示當NH2-MWCNTs的摻混量達0.025wt%時能將電路內部阻抗降至最低且能產生最大之光電表現。最後,比較原始TiO2與MWCNTs-TiO2所組裝之染料敏化太陽能電池,MWCNTs-TiO2的組別可提升近76%的光電轉換效率,而這主要是歸因於MWCNTs-TiO2結構的MWCNTs所賜。
The incorporation of P-phenylenediamine treated multi-walled carbon nanotubes (MWCNTs) into titanium dioxide network that contributes to a significant improvement in the energy conversion efficiency of dye-sensitized solar cells (DSSCs) has been demonstrated. Well-dispersed NH2-MWCNTs-TiO2 nanocomposite were modified on fluorine-doped tin oxide (FTO) glass. Then we change the contain of NH2-MWCNTs doped in TiO2 nanocrystalline matrix and alter the film thickness of NH2-MWCNTs(0.025 wt%)-TiO2 nanocomposite photoelectrde. The distribution of NH2-MWCNTs in TiO2 matrix and the film thickness of NH2-MWCNTs-TiO2 nanocomposite were investigate by field emission scanning electron microscopy (FESEM). The adsorption of dye-sensitizer on the working electrode were characterized by Ultraviolet-Visible spectroscopy (UV-Vis). UV-Vis spectrum reveal more higher absorbance on NH2-MWCNTs-TiO2 nanocomposite photoelectrode than the others. The charge resistance in the DSSC was characterized by electrochemical impedance spectroscopy (EIS). EIS results exhibit a decrease in the charge resistance of electrolyte/dye/NH2-MWCNTs-TiO2 interface with increasing NH2-MWCNTs contents which leads to an improvement in the photovoltaic performance up to 0.025 wt%. Compare with the nanocrystalline TiO2 DSSCs, the NH2-MWCNTs (0.025 wt%)-TiO2 nanocomposite photoelectrode in DSSCs shows ~76 % increase in solar-to-electric energy conversion efficiency, which is attributed to the inclusion of NH2-MWCNTs in TiO2 network.
URI: http://hdl.handle.net/11455/3871
其他識別: U0005-0707201116493000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0707201116493000
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.