Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3874
標題: 以PLA-Diol及不同軟鏈段二元醇混合之原料製備生物分解及生物相容性的水性聚氨酯
Formulation study on soft segment PLA Diol- Polyol Blend as the soft segment in Making Biocompatible and Biodegradable Waterborne Polyurethane (WBPU)
作者: 鄭絜文
Cheng, Chieh-Wen
關鍵字: waterborne PU
水性聚胺酯
poly(lactide) diol
biodegradable polymer
biocompatible polymer
PLA-WBPU
PLA-diol
聚乳酸二元醇
生物降解性
生物相容性
出版社: 化學工程學系所
引用: 1. 李吉祥楊致行,綠色化學:生態材料開發與應用,CHEMISTRY (The Chinese Chemical Society, Taipei) December 2007, Vol. 65, No. 4, pp. 397-408。 2. Anastas, P.T., Green Chemistry: Theory and Practice, Oxford University Press, 1998. 3. 楊斌馬振基,PLA聚乳酸環保塑膠,五南出版社2010。 4. 許戈文,水性聚氨酯材料,化學工業出版社。 5. 行政院環保署,http://www.epa.gov.tw/ 6. 黃建銘,生物可分解塑膠,日本生物可分解塑膠研究會。 7. Nef, J. U., Liebigs. Ann. Chem., 403, 204, 1914 8. Rokkanen P, Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle,The lancet,1985 Jun 22;1(8443):1422-4. 9. Carothers W H , Dorough G L , Van Natta F J . J . Am. Chem.Soc. , 1932 , 54 : 761 —772 10. R. K. Kulkarni, K. C. Pani, C. Nauman and F. Leonard, Arch. Surg., 839-843 (1966). 11. Handolin, Lauri.,The effects of low-intensity pulsedultrasound on bioavsorbable self-reinforced poly (l-lactide) screws, Biomaterials,Vol. 23, No. 13, pp. 2377-2736 (2002). 12. Lichun Lu, Rudolf K,Biomaterials19(1998)1945-1955 13. Hollinger JO, Role of bone substitutes .Clin Orthop,1996. 14. Food and Drug Administration,Listing of Food Additive Status Part II’’http://www.fda.gov/Food/FoodIngredientsPackaging/FoodAdditives/ucm191033.htm#ftnL’’ 15. Pramono, Nugroho.Degradation of poly(L-lactic acid) by γ-irradiation, Polymer Degradation and Stability, Vol.72, pp. 337-343 (2001). 16. Lunt, J. Large-scale production, properties and commercial applications of polylactic acid polymers, Journal of Polymer Degradation and Stability, 1998,59, 145-152. 17. Zhan G, Synthesis of molecular weight controllable polylactide by using organocatalyst,China Academic Journal Electronic Publishing House.2009 18. F. E. Kohn, The Ring-Opening Polymerization of D,L-Lactide in the Melt Initiated with Tetraphenyltin,1984. 19. A.P Gupta, New emerging trends in synthetic biodegradable polymers- Polylactide: A critique, European Polymer Jouranl,2007. 20. A.-C. Albertsson, Degradable Aliphatic Polyesters,Springer.2004. 21. Wang-xi Zhang and Yan-zhi Wang, Synthesis and Properties of high molecular weight Poly(lactic acid) and its resultant fibers, Chinese Journal of Polymer Science Vol. 26, No. 4, (2008), 425-432 22. Donald Garlotta, A Literature Review of Poly(Lactic Acid) ,Journal of Polymers and the Environment, Vol. 9, No. 2, April 2001. 23. J.Lunt,Polym.Degrad stab.,1998,145. 24. Kari Hiltunen,Synthesis and Characterization of Lactic Acid Based Telechelic Prepolymers, Macromolecules 1996, 29, 8677-8682 25. Xu Kaitian,Ahmet Kozluca,Poly(D,L-Lactide Acid) Homopolymers: Synthesis and Characterization,Tr.J. of Chemistry,1996,43-53. 26. Suong-Hyu Hyon, Khosrow Jamshidi and Yoshito Ikada, Synthesis of polylactides with different molecular weights, Biomateriols 16 (1997) 1503-1508 27. NatureWorks, Life Cycle Assessment of Polylactide(PLA),2006 28. Zhihua Zhou, Influence of Degradation of Poly-L-lactide on Mass Loss, Mechanical Properties, and Crystallinity in Phosphate-Buffered Solution. Journal of Macromlecular Science,Part B. 29. 李紹雄,聚氨酯樹脂及應用,化學工業出版社. 30. 陳佑星,兼具生物分解及生物相容性之聚乳酸-水性聚氨酯的合成,2010. 31. 財團法人水係氨基甲酸酯樹脂(PU)之合成技術專輯,中國紡織工業研究中心,2007. 32. Wenshou Wang,Peng Ping,Polylactide-based polyurethane and its shape-memory behavior,European polymer Journal,2006. 33. Kari Hiltunen,Effect of Catalyst and Polymerization Conditions on the Preparation of Low Molecular Weight Lactic Acid Polymers, Macromolecules 1997, 30, 373-379. 34. Stuart L.Cooper, Properties of linear elastomeric polyurethanes.Journal of Applied Polymer Science,1966.10(12) 35. Xiao-diong chen, Characterization Methods for Polyurethane Elastomer MiroPhase Sparated Structure 36. T. R. Hesketh , J. W. C. Van Bogart , and S. L. Cooper , Differential scanning calorimetry analysis of morphological changes in segmented elastomers, ” Polym. Eng. Sci, 1980. 37. 朱伯旭,聚碳酸酯型水性聚氨酯的合成與生物相容性研究,2010.
摘要: 本研究乃聚焦於合成應用於生物醫學中之具有生物相容性和生物可降解性的水性聚氨酯(WBPU)。同時強調兩個主要合成領域,首先,是經環狀丙交酯經開環聚合後,再經純化合成長鏈聚乳酸二元 醇(PLA-diol-2000)。其次,則為根據先前在本實驗室所發展出之水性PU引進幾種市售軟鏈二元醇與PLA-diol混合合成出最優化性能的水性聚氨酯。 為了改進聚乳酸二元醇-2000之產率及純度,將兩種短鏈1,4-丁二元醇(1,4-Butanediol, BDO)及二甘醇(Diethylene Glycol, DEG)當作起始劑與環狀丙交酯進行開環聚合,兩者產率雖然沒有差異很大,但研究發現由DEG當作起始劑開環聚合之PLA-diol-2000-DEG其結晶性比經由BDO開環聚合之PLA-diol-2000-BDO高。開環之聚乳酸二元醇經由三倍體積之乙醇進行純化,可以將未反應完之乳酸移除,以高產率(86%)得到結晶性之聚乳酸二元醇-2000(mp=123.7oC)。 本研究的水性聚氨酯配方之優化主要是透過聚乳酸二元醇與四種市售之長鏈二元醇,分別為聚四氫呋喃(Polytetramethylene diol,PTMEG diol-2000), 聚已內酯二元醇(Polycarbonate diol,PCL diol-2000), 聚碳酸酯二元醇(Polycarbonate diol ,PCDL diol-2000) 以及聚酯類 Polyadipate diol (RS956 diol-2000)作為不同比例之軟鏈段組成,再以異佛爾酮二異氰酸酯(IPDI),二羥甲丙酸(DMPA),三乙胺(TEA)和乙二胺(EDA)作為共同原料。最後,經由實驗得知,混合三種不同長鏈二元醇RS-956 diol-2000、 PTMEG diol-2000、PLA diol-2000重量百分比為60:20:20時,可以得到最佳的結果,特別是此水性PU材料有伸長率為598%、100%模數為5.2及抗拉強度為22.7MPa的優良機械強度,並且通過生物相容性測試,細胞貼附。
My research has focused on syntheses of waterborne polyurethanes (WBPU) possessing both bio-compatible and bio-degradable properties to be used in bio-medical applications. In the study, two synthetic areas have been emphasized. Firstly, a convenient purification procedure of long-chained polylactic diols (PLA-diol-2000) was accomplished after a ring-opening reaction of lactide with diols. Second, formulation enhancement based on previous developed formulation in our laboratory has been achieved through testing of blends of several commercially available soft-segment diols mixed with PLA-diol to optimize performances of WBPUs. In order to improve yields and purity of PLA-diol-2000, two short-chained diols, butanediol (BDO) and diethylene glycol (DEG) have been tried as the initiators in the lactide's ring-opening reaction. Although no substantial differences were found in their yields of PLA-diol-2000, DEG initiated PLA-diol-2000-D seems to produce PLA-diol-2000 of higher crystalline property than that of butanediol. In the isolation of PLA-diol-2000, washing of the initial ring-opening products with ethanol at the volume of three-time the weight of lactide used seems suffice in eliminating all un-reacted lactide from the product and getting crystalline PLA-diol-2000 (mp =123.7o C) in high isolation yield (86%). Our formulation optimization of WBPU has been primarily done by using blends of PLA-diol-2000 with four different commercial samples, polytetramethylene diol (PTMEG diol-2000), polycarbonate diol (PCL diol-2000), polycarbonate diol (PCDL diol-2000) and the original polyadipate diol (RS956 diol-2000) in different ratios as our soft segment raw materials. Isophorone diisocyanate (IPDI), dimethyol propionic acid (DMPA), triethyleneamine (TEA) and ethylene diamine (EDA) were used as our common raw materials. After product performance analyses, we identified that a blend of three long-chained diols of RS-956 diol-2000, PTMEG diol-2000, and PLA diol-2000 in weight ratio of 60/20/20% gives the best overall results. Particularly, the specific WBPU synthesized made with the optimized formulation has excellent mechanical properties with elongation of 598%, 100% modulus of 5.2 and tensile strength of 22.7, and it also passes the preliminary bio-compatible and cell attachment tests.
URI: http://hdl.handle.net/11455/3874
其他識別: U0005-0908201109323800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908201109323800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.