Please use this identifier to cite or link to this item:
標題: 類水滑石化合物添加過渡金屬作為鹼性觸媒與轉酯化反應生成生質柴油之應用
Hydrotalcite-like compounds containing transition metals as solid base catalysts for transesterification and application for biodiesel production
作者: 王譽賓
Wang, Yu-Bin
關鍵字: Hydrotalcite compounds
Hydrotalcite-like compounds
出版社: 化學工程學系所
引用: 第七章 參考文獻 References: [1] R. Altın, S. Çetinkaya, H.S. Yücesu, The potential of using vegetable oil fuels as fuel for diesel engines, Energy Conversion and Management, 42 (2001) 529-538. [2] Y. Ali, M.A. Hanna, Alternative diesel fuels from vegetable oils, Bioresource Technology, 50 (1994) 153-163. [3] L.G. Schumacher, S.C. Borgelt, D. Fosseen, W. Goetz, W.G. Hires, Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends, Bioresource Technology, 57 (1996) 31-36. [4] C.-Y. Lin, H.-A. Lin, Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process, Fuel, 85 (2006) 298-305. [5] W. Du, Y. Xu, D. Liu, J. Zeng, Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors, Journal of Molecular Catalysis B: Enzymatic, 30 (2004) 125-129. [6] 工業技術研究院網站, [7] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Synthesis of Biodiesel via Acid Catalysis, Industrial & Engineering Chemistry Research, 44 (2005) 5353-5363. [8] J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae, U.S. Department of Energy`s Office of Fuels Development, National Renewable Energy Laboratory, (1998). [9] F. Ma, M.A. Hanna, Biodiesel production: a review, Bioresource Technology, 70 (1999) 1-15. [10] E. Pryde, Vegetable oils as diesel fuels: Overview, Journal of the American Oil Chemists'' Society, 60 (1983) 1557-1558. [11] C. Adams, J. Peters, M. Rand, B. Schroer, M. Ziemke, Investigation of soybean oil as a diesel fuel extender: Endurance tests, Journal of the American Oil Chemists'' Society, 60 (1983) 1574-1579. [12] M. Ziejewski, H. Goettler, G.L. Pratt, International Congress and Exposition, Detroit, MI,, Paper No. 860301 (1986). [13] C. Goering, B. Fry, Engine durability screening test of a diesel oil/soy oil/alcohol microemulsion fuel, Journal of the American Oil Chemists'' Society, 61 (1984) 1627-1632. [14] A.W. Schwab, M.O. Bagby, B. Freedman, Preparation and properties of diesel fuels from vegetable oils, Fuel, 66 (1987) 1372-1378. [15] E. Pryde, Vegetable oils as fuel alternatives-Symposium overview, Journal of the American Oil Chemists'' Society, 61 (1984) 1609-1610. [16] C.E. Goering, R.N. Camppion, A.W. Schwab, E.H. Pryde, In vegetable oil fuels, proceedings of the international conference on plant and vegetable oils as fuels, Fargo, North Dakota., American Society of Agricultural Engineers, 4 (1982) 279-286. [17] M. Ziejewski, K. Kaufman, A. Schwab, E. Pryde, Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion, Journal of the American Oil Chemists'' Society, 61 (1984) 1620-1626. [18] N.O.V. Sonntag, Reactions of fats and fatty acids, Bailey''s industrial oil and fat products, 1 (1979) John Wiley & Sons, New York, p. 99. [19] P.B. Weisz, W.O. Haag, P.G. Rodeweld, Catalytic production of high-grade fuel (gasoline) from biomass compounds by shapedelective catalysis., Science, 206 (1979) 57-58. [20] C.C. Chang, S.W. Wan, China''s motor fuels from tung oil, Ind. Eng. Chem., 39 (1947) 1543-1548. [21] A. Crossley, T. Heyes, B. Hudson, The effect of heat on pure triglycerides, Journal of the American Oil Chemists'' Society, 39 (1962) 9-14. [22] A. Schwab, G. Dykstra, E. Selke, S. Sorenson, E. Pryde, Diesel fuel from thermal decomposition of soybean oil, Journal of the American Oil Chemists'' Society, 65 (1988) 1781-1786. [23] R.A. Niehaus, C.E. Goering, L.D. Savage, S. Jr., S.C., Cracked soybean oil as a fuel for a diesel engine, Trans, ASAE 29 (1986) 683-689. [24] J.W. Alencar, P.B. Alves, A.A. Craveiro, Pyrolysis of tropical vegetable oils, Journal of Agricultural and Food Chemistry, 31 (1983) 1268-1270. [25] F. Billaud, V. Dominguez, P. Broutin, C. Busson, Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil, Journal of the American Oil Chemists'' Society, 72 (1995) 1149-1154. [26] D. Pioch, P. Lozano, R. P., M.C., J. Graille, P. Geneste, A. Guida, Biofuels from catalytic cracking of tropical vegetable oils, Oleagineux, 48 (1993) 289-291. [27] H.D. Hanh, N.T. Dong, K. Okitsu, R. Nishimura, Y. Maeda, Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field, Renewable Energy, 34 (2009) 766-768. [28] S. Demirkol, H. Aksoy, M. Tüter, G. Ustun, D. Sasmaz, Optimization of enzymatic methanolysis of soybean oil by response surface methodology, Journal of the American Oil Chemists'' Society, 83 (2006) 929-932. [29] A.-F. Hsu, K. Jones, T.A. Foglia, W.N. Marmer, Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel, Biotechnology and Applied Biochemistry, 36 (2002) 181-186. [30] S. Saka, D. Kusdiana, Biodiesel fuel from rapeseed oil as prepared in supercritical methanol, Fuel, 80 (2001) 225-231. [31] W. Cao, H. Han, J. Zhang, Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent, Fuel, 84 (2005) 347-351. [32] D. Boocock, S. Konar, V. Mao, C. Lee, S. Buligan, Fast formation of high-purity methyl esters from vegetable oils, Journal of the American Oil Chemists'' Society, 75 (1998) 1167-1172. [33] D.G.B. Boocock, S.K. Konar, V. Mao, H. Sidi, Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters, Biomass and Bioenergy, 11 (1996) 43-50. [34] K.G. Georgogianni, M.G. Kontominas, P.J. Pomonis, D. Avlonitis, V. Gergis, Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel, Fuel Processing Technology, 89 (2008) 503-509. [35] G.M. Tashtoush, M.I. Al-Widyan, M.M. Al-Jarrah, Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel, Energy Conversion and Management, 45 (2004) 2697-2711. [36] M.I. Al-Widyan, A.O. Al-Shyoukh, Experimental evaluation of the transesterification of waste palm oil into biodiesel, Bioresource Technology, 85 (2002) 253-256. [37] A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Biodiesel production from high FFA rubber seed oil, Fuel, 84 (2005) 335-340. [38] M. Canakci, J. Van Gerpen, Biodiesel production via acid catalysis, American Society of Agricultural and Biological Engineers, 42 (1999 ) 1203-1210 [39] H. Wright, J. Segur, H. Clark, S. Coburn, E. Langdon, R. DuPuis, A report on ester interchange, Journal of the American Oil Chemists'' Society, 21 (1944) 145-148. [40] K.G. Georgogianni, A.K. Katsoulidis, P.J. Pomonis, G. Manos, M.G. Kontominas, Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis, Fuel Processing Technology, 90 (2009) 1016-1022. [41] M. Çetinkaya, F. Karaosmanoglu, Optimization of Base-Catalyzed Transesterification Reaction of Used Cooking Oil, Energy & Fuels, 18 (2004) 1888-1895. [42] G. Vicente, M. Martínez, J. Aracil, Integrated biodiesel production: a comparison of different homogeneous catalysts systems, Bioresource Technology, 92 (2004) 297-305. [43] M. P. Dorado, E. Ballesteros, J. A. de Almeida, C. Schellert, R. Krause, An Alkali-catalyzed transesterification process for high free fatty acid waste oils, American Society of Agricultural and Biological Engineers, 45 (2002) 525-529. [44] D.W. Lee, Y.M. Park, K.Y. Lee, Heterogeneous Base Catalysts for Transesterification in Biodiesel Synthesis, Catalysis Surveys from Asia, 13 (2009) 63-77. [45] U. Schuchardt, R. Sercheli, R.M. Vargas, Transesterification of vegetable oils: a review, in, J. Braz. Chem. Soc, 1998, pp. 199-210. [46] B. Freedman, R. Butterfield, E. Pryde, Transesterification kinetics of soybean oil 1, Journal of the American Oil Chemists'' Society, 63 (1986) 1375-1380. [47] D.E. López, J.J.G. Goodwin, D.A. Bruce, E. Lotero, Transesterification of triacetin with methanol on solid acid and base catalysts, Applied Catalysis A: General, 295 (2005) 97-105. [48] D.E. López, K. Suwannakarn, D.A. Bruce, J.G. Goodwin Jr, Esterification and transesterification on tungstated zirconia: Effect of calcination temperature, Journal of Catalysis, 247 (2007) 43-50. [49] S. Ramu, N. Lingaiah, B.L.A. Prabhavathi Devi, R.B.N. Prasad, I. Suryanarayana, P.S. Sai Prasad, Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity, Applied Catalysis A: General, 276 (2004) 163-168. [50] H. Chen, B. Peng, D. Wang, J. Wang, Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts, Frontiers of Chemical Engineering in China, 1 (2007) 11-15. [51] B.X. Peng, Q. Shu, J.F. Wang, G.R. Wang, D.Z. Wang, M.H. Han, Biodiesel production from waste oil feedstocks by solid acid catalysis, Process Safety and Environmental Protection, 86 (2008) 441-447. [52] H. Chen, J.F. Wang, Biodiesel Preparation from Transesterification of Cotton Seed Oil by Solid Acids Catalysis, The Chinese Journal of Process Engineering, 6 (2006) 571-575. [53] S.K. Karmee, A. Chadha, Preparation of biodiesel from crude oil of Pongamia pinnata, Bioresource Technology, 96 (2005) 1425-1429. [54] G. Guan, K. Kusakabe, N. Sakurai, K. Moriyama, Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether, Fuel, 88 (2009) 81-86. [55] K. Jacobson, R. Gopinath, L.C. Meher, A.K. Dalai, Solid acid catalyzed biodiesel production from waste cooking oil, Applied Catalysis B: Environmental, 85 (2008) 86-91. [56] Y. Watanabe, Y. Shimada, A. Sugihara, Y. Tominaga, Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor, Journal of the American Oil Chemists'' Society, 78 (2001) 703-707. [57] L. Wang, J. Yang, Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol, Fuel, 86 (2007) 328-333. [58] C. Xu, D. Enache, R. Lloyd, D. Knight, J. Bartley, G. Hutchings, MgO Catalysed Triglyceride Transesterification for Biodiesel Synthesis, Catalysis Letters, 138 (2010) 1-7. [59] M.C.G. Albuquerque, D.C.S. Azevedo, C.L. Cavalcante Jr, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, P. Maireles-Torres, Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts, Journal of Molecular Catalysis A: Chemical, 300 (2009) 19-24. [60] M.C.G. Albuquerque, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante Jr, P. Maireles-Torres, MgM (M=Al and Ca) oxides as basic catalysts in transesterification processes, Applied Catalysis A: General, 347 (2008) 162-168. [61] B. Yoosuk, P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya-empikul, K. Faungnawakij, Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein, Chemical Engineering Journal, 162 (2010) 58-66. [62] J.-I. Take, N. Kikuchi, Y. Yoneda, Base-strength distribution studies of solid-base surfaces, Journal of Catalysis, 21 (1971) 164-170. [63] X. Liu, H. He, Y. Wang, S. Zhu, Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst, Catalysis Communications, 8 (2007) 1107-1111. [64] Z. Yang, W. Xie, Soybean oil transesterification over zinc oxide modified with alkali earth metals, Fuel Processing Technology, 88 (2007) 631-638. [65] C. Ngamcharussrivichai, P. Totarat, K. Bunyakiat, Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil, Applied Catalysis A: General, 341 (2008) 77-85. [66] H.-J. Kim, B.-S. Kang, M.-J. Kim, Y.M. Park, D.-K. Kim, J.-S. Lee, K.-Y. Lee, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catalysis Today, 93-95 (2004) 315-320. [67] R. Sree, N. Seshu Babu, P.S. Sai Prasad, N. Lingaiah, Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts, Fuel Processing Technology, 90 (2009) 152-157. [68] S. Yan, M. Kim, S. Mohan, S.O. Salley, K.Y.S. Ng, Effects of preparative parameters on the structure and performance of Ca-La metal oxide catalysts for oil transesterification, Applied Catalysis A: General, 373 (2010) 104-111. [69] M.J. Climent, A. Corma, P. De Frutos, S. Iborra, M. Noy, A. Velty, P. Concepción, Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs, Journal of Catalysis, 269 (2010) 140-149. [70] G. Macala, A. Robertson, C. Johnson, Z. Day, R. Lewis, M. White, A. Iretskii, P. Ford, Transesterification Catalysts from Iron Doped Hydrotalcite-like Precursors: Solid Bases for Biodiesel Production, Catalysis Letters, 122 (2008) 205-209. [71] E. Li, Z.P. Xu, V. Rudolph, MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel, Applied Catalysis B: Environmental, 88 (2009) 42-49. [72] L.H. Posorske, Industrial-scale application of enzymes to the fats and oil industry., Journal of the American Oil Chemists'' Society, 61 (1984) 1758-1760. [73] C.-J. Shieh, C.C. Akoh, L.N. Yee, Optimized enzymatic synthesis of geranyl butyrate with lipase AY from candida rugosa, Biotechnology and Bioengineering, 51 (1996) 371-374. [74] Y. Shimada, Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H. , Tominaga, Y., Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase., Journal of the American Oil Chemists'' Society, 76 (1999) 789-793. [75] J.-W. Chen, W.-T. Wu, Regeneration of immobilized Candida antarctica lipase for transesterification, Journal of Bioscience and Bioengineering, 95 (2003) 466-469. [76] M.A.P.J. Hacking, H. Akkus, F. van Rantwijk, R.A. Sheldon, Lipase and esterase-catalyzed acylation of hetero-substituted nitrogen nucleophiles in water and organic solvents, Biotechnology and Bioengineering, 68 (2000) 84-91. [77] A. Salis, M. Pinna, M. Monduzzi, V. Solinas, Biodiesel production from triolein and short chain alcohols through biocatalysis, Journal of Biotechnology, 119 (2005) 291-299. [78] D.G. Cantrell, L.J. Gillie, A.F. Lee, K. Wilson, Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis, Applied Catalysis A: General, 287 (2005) 183-190. [79] R. Chebout, D. Tichit, G. Layrac, A. Barama, B. Coq, I. Cota, E.R. Rangel, F. Medina, New basic catalysts obtained from layered double hydroxides nanocomposites, Solid State Sciences, 12 (2010) 1013-1017. [80] J.M. Fraile, N. García, J.A. Mayoral, E. Pires, L. Roldán, The influence of alkaline metals on the strong basicity of Mg-Al mixed oxides: The case of transesterification reactions, Applied Catalysis A: General, 364 (2009) 87-94. [81] A. Béres, P. István, I. Kiricsi, J. Nagy, K. Yoshimichi, F. Mizukami, Layered double hydroxides and their pillared derivatives - materials for solid base catalysis; synthesis and characterization, Applied Catalysis A: General, 182 (1999) 237-247. [82] A. Chen, H. Xu, Y. Yue, W. Hua, W. Shen, Z. Gao, Hydrogenation of methyl benzoate to benzaldehyde over manganese oxide catalysts prepared from Mg/Mn/Al hydrotalcite-like compounds, Applied Catalysis A: General, 274 (2004) 101-109. [83] A. Dubey, S. Kannan, S. Velu, K. Suzuki, Catalytic hydroxylation of phenol over CuM(II)M(III) ternary hydrotalcites, where M(II) = Ni or Co and M(III) = Al, Cr or Fe, Applied Catalysis A: General, 238 (2003) 319-326. [84] H. Morioka, Y. Shimizu, M. Sukenobu, K. Ito, E. Tanabe, T. Shishido, K. Takehira, Partial oxidation of methane to synthesis gas over supported Ni catalysts prepared from Ni-Ca/Al-layered double hydroxide, Applied Catalysis A: General, 215 (2001) 11-19. [85] T.V. Reshetenko, L.B. Avdeeva, A.A. Khassin, G.N. Kustova, V.A. Ushakov, E.M. Moroz, A.N. Shmakov, V.V. Kriventsov, D.I. Kochubey, Y.T. Pavlyukhin, A.L. Chuvilin, Z.R. Ismagilov, Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures: I. Genesis of calcined and reduced catalysts, Applied Catalysis A: General, 268 (2004) 127-138. [86] V. Rives, S. Kannan, Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+, Journal of Materials Chemistry, 10 (2000) 489-495. [87] S. Velu, C.S. Swamy, Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds, Applied Catalysis A: General, 145 (1996) 141-153. [88] M. Angeles Aramendia, V. Borau, C. Jimenez, J. Maria Marinas, F. Jose Romero, F. Jose Urbano, Synthesis and characterization of a novel Mg/In layered double hydroxide, Journal of Materials Chemistry, 9 (1999) 2291-2292. [89] R. Bîrjega, O.D. Pavel, G. Costentin, M. Che, E. Angelescu, Rare-earth elements modified hydrotalcites and corresponding mesoporous mixed oxides as basic solid catalysts, Applied Catalysis A: General, 288 (2005) 185-193. [90] B.S. Chauhan, R. Kumar, K.M. Jadhav, M. Singh, Magnetic study of substituted Mg-Mn ferrites synthesized by citrate precursor method, Journal of Magnetism and Magnetic Materials, 283 (2004) 71-81. [91] P.S. Kumbhar, J. Sanchez-Valente, J.M.M. Millet, F. Figueras, Mg-Fe Hydrotalcite as a Catalyst for the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate, Journal of Catalysis, 191 (2000) 467-473. [92] W. Lohstroh, R.J. Westerwaal, A.C. Lokhorst, J.L.M. van Mechelen, B. Dam, R. Griessen, Double layer formation in Mg-TM switchable mirrors (TM: Ni, Co, Fe), Journal of Alloys and Compounds, 404-406 (2005) 490-493. [93] A.H. Padmasri, A. Venugopal, J. Krishnamurthy, K.S. Rama Rao, P. Kanta Rao, Novel calcined Mg-Cr hydrotalcite supported Pd catalysts for the hydrogenolysis of CCl2F2, Journal of Molecular Catalysis A: Chemical, 181 (2002) 73-80. [94] P. Kustrowski, L. Chmielarz, E. Bozek, M. Sawalha, F. Roessner, Acidity and basicity of hydrotalcite derived mixed Mg-Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2, Materials Research Bulletin, 39 (2004) 263-281. [95] T. López, P. Bosch, M. Asomoza, R. Gómez, E. Ramos, DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties, Materials Letters, 31 (1997) 311-316. [96] D. Tichit, D. Lutic, B. Coq, R. Durand, R. Teissier, The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts, Journal of Catalysis, 219 (2003) 167-175. [97] H.A. Prescott, Z.-J. Li, E. Kemnitz, A. Trunschke, J. Deutsch, H. Lieske, A. Auroux, Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity and acid-base properties, Journal of Catalysis, 234 (2005) 119-130. [98] A.d. Roy, C. Forano, K.E. Malki, J.P. Besse, M.L.Occelli, H.E. Robson, Expanded Clays and Other Microporous Solids, 2 (1992) 108. [99] F.J. Brocker, L. Kainer, German Patent 2,024,282(1970) to BASF AG, UK Patent 1,342,020(1971) to BASF AG. [100] Cavani, F, Trifiro, F, Vaccari, A, Hydrotalcite-type anionic clays : preparation, properties and applications, Elsevier, Amsterdam, PAYS-BAS, 1991. [101] W.T. Reichle, Catalytic reactions by thermally activated, synthetic, anionic clay minerals, Journal of Catalysis, 94 (1985) 547-557. [102] Z.P. Xu, H.C. Zeng, Decomposition Pathways of Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)xnH2O as a Continuous Function of Nitrate Anions, Chemistry of Materials, 13 (2001) 4564-4572. [103] W.T. Reichle, S.Y. Kang, D.S. Everhardt, The nature of the thermal decomposition of a catalytically active anionic clay mineral, Journal of Catalysis, 101 (1986) 352-359. [104] K.K. Rao, M. Gravelle, J.S. Valente, F. Figueras, Activation of Mg-Al Hydrotalcite Catalysts for Aldol Condensation Reactions, Journal of Catalysis, 173 (1998) 115-121. [105] P. S. Kumbhar, Modified Mg-Al hydrotalcite: a highly active heterogeneous base catalyst for cyanoethylation of alcohols, Chemical Communications, (1998) 1091-1092. [106] S. Abelló, F. Medina, D. Tichit, J. Pérez-Ramírez, J.C. Groen, J.E. Sueiras, P. Salagre, Y. Cesteros, Aldol Condensations Over Reconstructed Mg–Al Hydrotalcites: Structure–Activity Relationships Related to the Rehydration Method, Chemistry – A European Journal, 11 (2005) 728-739. [107] Y. Xi, R.J. Davis, Influence of water on the activity and stability of activated MgAl hydrotalcites for the transesterification of tributyrin with methanol, Journal of Catalysis, 254 (2008) 190-197. [108] H.C. Greenwell, S. Stackhouse, P.V. Coveney, W. Jones, A Density Functional Theory Study of Catalytic trans-Esterification by tert-Butoxide MgAl Anionic Clays, The Journal of Physical Chemistry B, 107 (2003) 3476-3485. [109] H.-y. Zeng, Z. Feng, X. Deng, Y.-q. Li, Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil, Fuel, 87 (2008) 3071-3076. [110] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker, T.J. Toops, Biodiesel synthesis using calcined layered double hydroxide catalysts, Applied Catalysis B: Environmental, 82 (2008) 120-130. [111] J. Tantirungrotechai, P. Chotmongkolsap, M. Pohmakotr, Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides, Microporous and Mesoporous Materials, 128 (2010) 41-47. [112] N.S.A.O. Ireland, Fat and oil derivates-Fatty acid methyl ester (FAME)-Determination of ester and linolenic acid methyl ester contents, I.S. EN 14103:12003., (2003). [113] W. Xie, H. Peng, L. Chen, Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, Journal of Molecular Catalysis A: Chemical, 246 (2006) 24-32. [114] Y. Xi, R.J. Davis, Influence of textural properties and trace water on the reactivity and deactivation of reconstructed layered hydroxide catalysts for transesterification of tributyrin with methanol, Journal of Catalysis, 268 (2009) 307-317. [115] U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, New Synthetic Routes to Hydrotalcite-Like Compounds − Characterisation and Properties of the Obtained Materials, European Journal of Inorganic Chemistry, 1998 (1998) 1439-1446. [116] C. Resini, T. Montanari, L. Barattini, G. Ramis, G. Busca, S. Presto, P. Riani, R. Marazza, M. Sisani, F. Marmottini, U. Costantino, Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: Catalyst characterization, catalytic activity and reaction path, Applied Catalysis A: General, 355 (2009) 83-93. [117] K. Takehira, T. Shishido, D. Shouro, K. Murakami, M. Honda, T. Kawabata, K. Takaki, Novel and effective surface enrichment of active species in Ni-loaded catalyst prepared from Mg–Al hydrotalcite-type anionic clay, Applied Catalysis A: General, 279 (2005) 41-51. [118] J.M. Fraile, N. Garcı´a, J.A. Mayoral, E.s. Pires, L. Rolda´n, The influence of alkaline metals on the strong basicity of Mg-Al mixed oxides: The case of transesterification reactions, Applied Catalysis A: General, 364 (2009) 87-94. [119] T. Kawabata, Y. Shinozuka, Y. Ohishi, T. Shishido, K. Takaki, K. Takehira, Nickel containing Mg-Al hydrotalcite-type anionic clay catalyst for the oxidation of alcohols with molecular oxygen, Journal of Molecular Catalysis A: Chemical, 236 (2005) 206-215. [120] Y. Ohishi, T. Kawabata, T. Shishido, K. Takaki, Q. Zhang, Y. Wang, K. Nomura, K. Takehira, Mg-Fe-Al mixed oxides with mesoporous properties prepared from hydrotalcite as precursors: Catalytic behavior in ethylbenzene dehydrogenation, Applied Catalysis A: General, 288 (2005) 220-231. [121] T. Kawabata, N. Fujisaki, T. Shishido, K. Nomura, T. Sano, K. Takehira, Improved Fe/Mg-Al hydrotalcite catalyst for Baeyer–Villiger oxidation of ketones with molecular oxygen and benzaldehyde, Journal of Molecular Catalysis A: Chemical, 253 (2006) 279-289. [122] V.J. Bulbule, H.B. Borate, Y.S. Munot, V.H. Deshpande, S.P. Sawargave, A.G. Gaikwad, Transesterification of [alpha]-haloesters and [beta]-ketoesters over Mg-Al-hydrotalcites (HT)-like anionic clays, Journal of Molecular Catalysis A: Chemical, 276 (2007) 158-161. [123] M. Sychev, R. Prihod''ko, K. Erdmann, A. Mangel, R.A. van Santen, Hydrotalcites: relation between structural features, basicity and activity in the Wittig reaction, Applied Clay Science, 18 (2001) 103-110. [124] S.M. Auer, J.D. Grunwaldt, R.A. Köppel, A. Baiker, Reduction of 4-nitrotoluene over Fe–Mg–Al lamellar double hydroxides, Journal of Molecular Catalysis A: Chemical, 139 (1999) 305-313. [125] J. Shen, M. Tu, C. Hu, Structural and Surface Acid/Base Properties of Hydrotalcite-Derived MgAlO Oxides Calcined at Varying Temperatures, Journal of Solid State Chemistry, 137 (1998) 295-301. [126] A.C.C. Rodrigues, C.A. Henriques, J.L.F. Monteiro, Influence of Ni content on physico-chemical characteristics of Ni, Mg, Al-Hydrotalcite like compounds, in, Materials Research, 6 (2003) 563-568. [127] E.L. Yijun Liu, James G. Goodwin Jr. , Xunhua Mo, Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts, Applied Catalysis A: General, 331 (2007) 138-148. [128] V.R. Choudhary, P.A. Chaudhari, V.S. Narkhede, Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts, Catalysis Communications, 4 (2003) 171-175. [129] Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, D. Tichit, B. Coq, Hydrodechlorination of 1,2,4-trichlorobenzene on nickel-based catalysts prepared from several Ni/Mg/Al hydrotalcite-like precursors, Applied Catalysis B: Environmental, 32 (2001) 25-35. [130] W.M. Antunes, C.d.O. Veloso, C.A. Henriques, Transesterification of soybean oil with methanol catalyzed by basic solids, Catalysis Today, 133-135 (2008) 548-554. [131] M.C.G. Albuquerque, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante Jr, P. Maireles-Torres, MgM (M= Al and Ca) oxides as basic catalysts in transesterification processes, Applied Catalysis A: General, 347 (2008) 162-168. [132] M.R. Othman, N.M. Rasid, W.J.N. Fernando, Mg-Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption, Chemical Engineering Science, 61 (2006) 1555-1560. [133] P. Kuśtrowski, A. Rafalska-Łasocha, D. Majda, D. Tomaszewska, R. Dziembaj, Preparation and characterization of new Mg–Al–Fe oxide catalyst precursors for dehydrogenation of ethylbenzene in the presence of carbon dioxide, Solid State Ionics, 141-142 (2001) 237-242. [134] R.V. Prikhod''ko, M.V. Sychev, I.M. Astrelin, K. Erdmann, A. Mangel, R.A. van Santen, Synthesis and Structural Transformations of Hydrotalcite-like Materials Mg-Al and Zn-Al, Russian Journal of Applied Chemistry, 74 (2001) 1621-1626. [135] F. Prinetto, G. Ghiotti, P. Graffin, D. Tichit, Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples, Microporous and Mesoporous Materials, 39 (2000) 229-247. [136] R.L. Frost, J.T. Kloprogge, Infrared emission spectroscopic study of brucite, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55 (1999) 2195-2205. [137] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley & Sons, (1997) 132-138. [138] G. Guan, N. Sakurai, K. Kusakabe, Synthesis of biodiesel from sunflower oil at room temperature in the presence of various cosolvents, Chemical Engineering Journal, 146 (2009) 302-306. [139] G. Guan, K. Kusakabe, S. Yamasaki, Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil, Fuel Processing Technology, 90 (2009) 520-524. [140] S. Yan, M. Kim, S. Mohan, S.O. Salley, K.Y.S. Ng, Effects of preparative parameters on the structure and performance of Ca–La metal oxide catalysts for oil transesterification, Applied Catalysis A: General, 373 (2010) 104-111.
摘要: 本研究是利用共沉澱法製備出添加含過渡金屬(Ni2+、Fe3+)之類水滑石(Hydrotalcite-Like Compounds, HTLCs)的層狀氫氧雙層化合物(Layerd double hydroxide, LDH)鹼性觸媒,MgAlNi-HTLCs與MgAlFe-HTLCs,將MgAlNi-HTLCs與MgAlFe-HTLCs在固定Al的含量分成四種不同MgAl與過渡金屬的莫耳比,Mg16Al8.5Ni1、Mg12Al6.5Ni1、Mg8Al4.5Ni1、Mg4Al2.5Ni1;Mg15Al8Fe1、Mg12Al6.5Fe1、Mg9Al5Fe1、Mg6Al3.5Fe1、並將M2+/(M2++M3+)~0.33,藉以探討添加過渡金屬對轉酯化反應之影響。MgAlNi在773 K下鍛燒10 h、MgAlFe在873 K下鍛燒16 h後,將此兩種含過渡金屬(MgAlNi與MgAlFe )之類水滑石化合物鹼性觸媒作為大豆油與甲醇之轉酯化反應上生成生質柴油之應用,並以FE-SEM、BET、XRD、TGA、CO2-TPD、FT-IR來分析MgAlNi與MgAlFe類水滑石化合物鹼性觸媒的物理與化學特性。分析結果發現類水滑石化合物鹼性觸媒的鹼性強度與Mg2+的含量有關,Mg2+的含量越多則鹼性越強,轉化率越高。在轉化率的表現上,添加過渡金屬後所形成的MgAlNi與MgAlFe類水滑石化合物鹼性觸媒也較未添加過渡金屬的水滑石化合物觸媒(Mg3Al)來得高。在Mg16Al8.5Ni1、Mg15Al8Fe1此兩種莫耳比下之觸媒,反應溫度65℃、攪拌轉速1200 rpm、醇油比21:1、反應時間4 h、觸媒添加量3 wt%,可以達到87%與81%的脂肪酸甲酯轉化率,而觸媒經過NH4OH與甲醇清洗、烘乾再鍛燒後,在重複使用性上也可以重複使用3次仍然有83%與78%的脂肪酸甲酯轉化率。
In this study, Hydrotalcite-like compounds (HTLCs) containing transition metals Ni2+ and Fe3+ layerd double hydroxide (LDH) MgAlNi and MgAlFe base catalysts were synthsized by co-precipitation method. The Mg2+、Al3+、Ni2+ and Fe3+ molar ratio varied over the range from Mg16Al8.5Ni1、Mg12Al6.5Ni1、Mg8Al4.5Ni1、Mg4Al2.5Ni1 of the MgAlNi and Mg15Al8Fe1、Mg12Al6.5Fe1、Mg9Al5Fe1、Mg6Al3.5Fe1 of the MgAlFe catalysts at a constant Al amount in M2+/(M2++M3+) is about 0.33 in the Hydrotalcite-like compounds to evaluate the conversion of the transesterification. The MgAlNi-HTLCs calcined at 773 K for 10 h and MgAlFe-HTLCs calcined at 873 K for 16 h have performed as base catalysts for transesterification of soybean oil with methanol to produce biodiesel, and the catalysts were characterized by FE-SEM, BET, XRD, TGA, CO2-TPD, FT-IR to evaluate the physical and chemical properties of the catalysts. The results have indicated that the basicity of the catalysts were related to the Mg2+ content, and the basicity increases with increasing Mg2+ content. From GC analysis, the conversion of containing transition metals of MgAlNi-HTLCs and MgAlFe-HTLCs were higher than the hydrotalcite compound(Mg3Al) without transition metals. The optimum reaction conditions were obtained with a methanol/oil molar ratio of 21, 3% catalyst (w/w oil), and 1200 rpm stirring speed for 4 h at 338K, and results in the highest FAME conversion for 87% of Mg16Al8.5Ni1 and 81% of Mg15Al8Fe1. The performance of the two previous catalysts of the three times reaction cycles with washing by NH4OH and methanol and following the drying and calcination procedures maintains at 83% and 78% conversion, respectively.
其他識別: U0005-1001201211534800
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.