Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3881
標題: 以立體超分枝狀高分子製備有機/無機二維層狀與零維奈米金屬混成材料
Preparation and Characterization of Novel Hyperbranched Polymer-Layered Clay and -Encapsulated Metal Nanoparticle Hybrids
作者: 楊國本
Yang, Guo-Ben
關鍵字: hyperbranched polymer
超分枝狀高分子
nanohybrid
nanoclay
奈米混成材料
奈米黏土
出版社: 化學工程學系所
引用: 1. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J. 1985, 17, 117. 2. M. S. Grayson, J. M. J. Frechet, Chem. Rev. 2001, 101, 3819. 3. B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca, M. R. Imam, V. Percec, Chem. Rev. 2009, 109, 6275. 4. Y. H. Kim, O.W. Webster, Polymer Preper 1988, 29, 310. 5. Y. H. Kim, O.W. Webster, J. Mam. Chem. Soc. 1990, 113, 4583. 6. M. Jikei, S. H. Chon, M. Kakimoto, S. Kawauchi, T. Imase, J. Watanebe, Macromlecules 1999, 32, 2061. 7. S. Xu, Y. Luo, R. Graeser, A. Warnecke, F. Kratz, P. Hauff, K. Licha, R. Haag, Bioorg. Med. Chem. Lett. 2009, 19, 1030. 8. Z. Li, S. Ye, Y. Liu, G. Yu, W. Wu, J. Qin, Z. Li, J. Phys. Chem. B 2010, 114, 9101. 9. H. Jin, Y. Zhou, W. Huang, D. Yan, Langmuir 2010, 26, 14512. 10. V. K. Oxana, I. K. Boris, Ind. Eng. Chem. Res. 2010, 49, 11142. 11. J. Y. Choi, S. W. Han, W. S. Huh, L. S. Tan, J. B. Baek, Polymer 2007, 48, 4034. 12. M. Rodlert, C. J. G. Plummera, L. Garamszegi, Y. Leterrier, H. J. M. Grunbauer, J. A. E. Manson, Polymer 2004, 45, 949. 13. S. Wang, Y. Zhou, S. Yang, B. Ding, Colloids Surf. B: Biointerfaces 2008, 67, 122. 14. K. Yamanaka, M. Jikei, M. Kakimoto, Macromolecules 2000, 33, 6937. 15. K. Yamanaka, M. Jikei, M. Kakimoto, Macromolecules 2000, 33, 1111. 16. J. Hao, M. Jikei, M. Kakimoto, Macromolecules 2002, 35, 5372. 17. J. Hao, M. Jikei, M. Kakimoto, Macromolecules 2003, 36, 3519. 18. V. Rives, Mater. Chem. Phys. 2002, 75, 19. 19. M. Meyn, K. Beneke, G. Lagaly, Inorg. Chem. 1990, 29, 5201. 20. F. Leroux and J. P. Besse, Chem. Mater. 2001, 13, 3507. 21. M. A. Wahab, I. Kim, C. S. Ha, Polymer 2003, 44, 4705. 22. C. C. Chang, W. C. Chen, Chem. Mater. 2002, 14, 4242. 23. S. Yano, K. Iwata, K. Kurita, Mater. Sci. Eng. C 1998, 6, 75. 24. Y. S. Ye, Y. C. Yen, C. C. Cheng, Y. J. Syu, Y. J. Huang, F. C. Chang, Polymer 2010, 51, 430. 25. M. S. Rama, S. Swaminathan, Ind. Eng. Chem. Res. 2010, 49, 2217. 26. M. Ogawa, K. Kuroda, Chem. Rev. 1995, 95, 399. 27. F. Leroux, J. P. Besse, Chem. Mater. 2001, 13, 3507. 28. F. Li, L. Jin, J. Han, M. Wei, C. Li, Ind. Eng. Chem. Res. 2009, 48, 5590. 29. N. Thomas, M. Rajamathi, Langmuir 2009, 25, 2212. 30. U. Costantino, V. Bugatti, G. Gorrasi, F. Montanari, M. Nocchetti, L. Tammaro, V. Vittoria, ACS Appl. Mater. Interfaces 2009, 1, 668. 31. S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989. 32. M. M. Miller, G. A. Prinz, S. F. Cheng, S. Bounnak, Appl. Phys. Lett. 2002, 81, 2211. 33. T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharm. 2005, 2, 194. 34. I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Souce, H. Marchais, P. Dubois, Analyst 2005, 130, 1395. 35. C. Corot, P. Robert, J. M. Idee, M. Port, Adv. Drug Delivery Rev. 2006, 58, 1471. 36. J. W. Bulte’, Methods Mol. Med. 2006, 124, 419. 37. S. W. Charles, J. Popplewell, Endeavour 1982, 6, 153. 38. M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 2010, 7, 1. 39. J. P. Jolivet, C. Chaneac, E. Tronc, Chem. Commun. 2004, 5, 481. 40. R. M. Cornell, U. Schertmann, Iron Oxides in the Laboratory: Preparation and Characterization; VCH Publishers: Weinheim, Germany, 1991. 41. S. Wei, Y. Zhu, Y. Zhang, J. Xu, React. Funct. Polym. 2006, 66, 1272. 42. Z. Mohammadi, A. Cole, C. J. Berkland, J. Phys. Chem. C 2009, 113, 7652. 43. R. S. Hsu, W. H. Chang, J. J. Lin, ACS Appl. Mater. Interfaces 2010, 2, 1349. 44. L. Zhou, C. Gao, X. Hu, W. Xu, Chem. Mater. 2011, 23, 1461. 45. 施君儒, 中興大學化工系碩士論文, 2008. 46. P. Ding, M. Zhang, J. Gai, B. Qu, J. Mater. Chem. 2007, 17, 1117. 47. J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong, J. Portier, J. Am. Chem. Soc. 1999, 121, 1399. 48. R. D. Waldron, Phys. Rev. 1955, 99, 1727.
摘要: 本研究結合立體超分枝狀高分子與二維無機層板開發具奈米層狀空間之有機/無機混成材料,超分枝狀高分子是三度立體空間的人造球型高分子,其立體內部空間與豐富外圍官能基使材料具結構變化性與可調控特質,研究中將製備自我聚合之AB2型超分枝狀高分子,並探討由黏土層間之三官能基AB2型單體以原位(in-situ)聚合成超分枝狀高分子以製備有機/無機奈米混成材料,層狀材料選擇為陰離子交換型的層狀雙氫氧化物(layered double hydroxides, LDHs) ,將AB2型單體導入層板後層間距由7.8 A增加到20 A,接下來於二維無機層板間直接進行聚合來觀察高分子構型對層板成長的變化,結果顯示隨AB2型超分枝狀高分子的分子量成長可調控層間距變化,由二維層板間原位聚合高分子的分子量成長分布範圍在1.1到2.5(分子量約4.0×104 g/mol到1.2×105 g/mol),而溶液間自由聚合之分子量分布約為2.6到4.7(分子量約8.0×105 g/mol到1.3×106 g/mol),兩者相比於層板限制空間中聚合情形呈現較窄分佈趨勢,此趨勢說明層板間AB2單體聚合可有效控制超分枝狀高分子呈現較規則的成長。此外利用超分枝狀高分子的外圍與內部之多官能基結合磁性四氧化三鐵奈米粒子之製備,使磁性金屬粒子於超分枝狀高分子的內部空間中還原成長,研究中調整不同的有機/無機重量比來觀察磁性奈米粒子以化學共沉澱法的成長情形,結果顯示當有機/無機重量比為2時,磁性奈米粒子的粒徑達到約5 nm,粒徑分佈相對也越平均,可知立體分枝結構可有效的調控四氧化三鐵無機粒子的成長,研究有機分子與無機材料於分子層次的交互作用,與不同無機材料界面上分子構型之改變,可望瞭解界面現象而達到真正控制材料的特性。
Nanoscale organic/inorganic hybrids based on hyperbranched polymers have been prepared in efforts to develop new functional materials. While the organic/inorganic nanohybrids have been fabricated for many applications, important challenges remain for understanding how the structure and dynamics at the organic-inorganic interface ultimately affect the materials properties. To be differentiated from the prior arts, this work involves the organosoluble hyperbranched polyimides (PIs) for clay intercalation and the application for hyperbranched polymer-encapsulated metal nanoparticle hybrids. We have developed a self-condensation scheme of hyperbranched PIs based on AB2 monomer, via straightforward reactions using low-cost materials. Incorporating the bulky hyperbranched polymers into layered clays by in-situ polymerization would create significant influence on the intercalated technique, and offer an interesting challenge for the formation of organo-clay hybrids. Our motivation for this research is to investigate the behavior of hyperbranched polymers at the clay interface in order to study the intercalating patterns of layered clays. The polydispersity indices (PDIs) of hyperbranched polymers through in-situ polymerization within clay interface are ranged from 1.1 to 2.5 (molecule weight ranged from 4.0×104 g/mol to 1.2×105 g/mol ), and the PDIs of hyperbranched polymers through self-polymerization at solution state are ranged from 2.6 to 4.7 (molecule weight ranged from 8.0×105 g/mol to 1.3×106 g/mol). The thrust of this research is to use hyperbranched polymers to manipulate the basal spacings between the layered clays in a wide range. Another aspect of this research are set forth to synthesize Fe3O4 magnetic nanoparticle by in-situ polymerization of hyperbranched polymers. Metal ions (FeCl2 and FeCl3) were loaded into the self-assembled hyperbranched polymers, and subsequent chemical coprecipitation using NH4OH would yield a new type of organic/metallic nanohybrids. In this study, we discuss the efficacy of hyperbranched polymers based templates in controlling the organic/metallic nanohybrids, and various relevant parameters affecting their sizes and shapes. Utilizing the nature of self-assembly approach, one can easily tailor the size, shape and physical properties of organic/metallic nanohybrids. This approach is potentially applicable in biochemical aspect, drug delivery, self-assembly systems, electro-magnetic materials, catalysts, etc.
URI: http://hdl.handle.net/11455/3881
其他識別: U0005-1008201113154500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008201113154500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.