Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3893
標題: 以非光氣法製備4,4''-二苯基甲烷二異氰酸鹽
Non-phosgene Route to 4,4''-Methylenediphenylene Diisocyanate
作者: 陳學永
Chen, Hseuh-Yong
關鍵字: non-phosgene route
非光氣法
diphenyl carbonate
碳酸二苯酯
出版社: 化學工程學系所
引用: [1] O. Bayer, DE Pat. 728 981, 1942. [2] D. Randall, S. Lee, The Polyurethane book, John Willey, 2000. [3] J. E. Kresta, 60 Years of Polyurethane,Technomic Pub., 1998. [4] 山西省化工研究所, 聚氨酯彈性體手冊, 化學工業出版社, 2001. [5] 于劍昆, 化學推進劑與高分子材料, 6, 7, 2008. [6] H. Ulrich, Chemistry and Technology of Isocyanates, John Willey, 1996. [7] D. C. Allport, D.S. Gilbert, S.M. Outterside, MDI and TDI: a safety, health, and the environment, John Wiley, 2003. [8] 中鼎工程公司, 中鼎月刊, 28, 312, 2003. [9] 林照興, 國立中興大學博士論文, 2008. [10] 陳東武, 孫建梅, 翟江, 醫藥應用, 134, 16, 2003. [11] 夏敏, 湯建新, 珠江工業學院學報, 14, 1, 2000. [12] S. Kim, KR Pat. 9 600 007 802, 1992. [13] H. Hellbach, F. Merger, F. Toawe, US Pat. 4 596 679, 1986. [14] G. Bohmholdt, W. Heimann, P. Kirchner, H.-W. Michalczak, US Pat. 5 360 931, 1994. [15] G. J. Zajacek, J. J. Mccoy, E. K. Fuger, US Pat. 3 895 054, 1975. [16] S. Fukuoka, M. Chonom, T. Watanabe, M. Kohno, US Pat. 4 547 322, 1985. [17] 段吉平, 上海化工, 26, 22, 2001. [18] 張磊, 袁存光, 關國和, 石油化工, 35, 1048, 2006. [19] 張磊, 袁存光, 孫振忠, 合成技術與應用, 21, 27, 2006. [20] 譚娜, 聚氨酯工業, 24, 36, 2009. [21] 王軍威, 李其峰, 董文生, 高等學校化學學報, 25, 930, 2004. [22] W.-K. Kang, G.-Y. Wang, J. Yao, Chem. Res. Chinese U, 22, 669, 2006. [23] 康武魁, 康濤, 馬飛, 催化學報, 28, 5, 2007. [24] M. Curini, F. Epifano, F. Maltese, Tetrahedron Letters, 43, 4895, 2002. [25] 王娜, 趙新強, 武秀麗, 化工學報, 59, 887, 2008. [26] 王公應, 王富強, 馬飛, CN Pat. 1 775 354, 2006. [27] 汪多仁, 四川化工, 3, 57, 1995. [28] 趙新強, 王延吉, 李芳, 石油學報, 17, 53, 2001. [29] 陳東, 劉良明, 王越, 催化學報, 26, 987, 2005. [30] U. Pedro, S. Marc, S, Pilar, Tetrahedron Letters, 43, 1673, 2002. [31] 沈菊華, 石油化工技術經濟, 21, 40, 2005. [32] 溫建勝, 國立中興大學碩士論文, 2002. [33] 鐘子惠, 國立中興大學碩士論文, 2005. [34] N. Yamazaki, T. Iguchi, Journal of Polymer Science: Polymer Chemistry Edition, 17, 835, 1979. [35] K. Harada, R. Sugise, K. Kashiwagi, T. Matsuura, US Pat. 6 143 917, 2000. [36] R. W. Mason, L. Charles, US Pat. 6 781 010, 2000. [37] M. Shinohata, N. Miyake, EP Pat. 2 275 405, 2011. [38] B. Volker, F. Gerhard, S. Hermann, DE Pat. 1 133 727, 1962. [39] G. C. Teroso,D. Ferry, US Pat. 3 718 675, 1973. [40] J.-M. Paul, R. Alain, F. Frederic, R. Sylvain, US Pat. 6 346 650, 2002. [41] I. Villax, DE Pat. 1 200 822, 1965. [42] M. Strandmann, S. Klutchko, D. Conner, J. Shavel, J. Org. Chem., 36, 1742, 1971.
摘要: 本研究以非光氣兩步法製備4,4’-二苯基甲烷二異氰酸鹽,第一步反應利用本實驗室先前於綠色化學上的研究,以4,4’-二苯基甲烷二胺 (4,4’- Methylenedianiline,4,4’-MDA)為起始原料,與碳酸二苯酯 (Diphenyl carbonate,DPC)並以碳質子酸(Carboxylic acid)為催化劑、甲苯(Toluene)為溶劑進行羰基化反應合成N,N’-diphenyl-4,4’- methylenediphenylene biscarbamate (4,4’-DP-MDC),第二步利用4,4’- DP-MDC進行熱分解製備4,4’-二苯基甲烷二異氰酸鹽(4,4’- Methylenediphenylene diisocyanate,4,4’-MDI)。 第一步羰基化反應中,於催化劑碳質子酸的選擇、催化劑的使用量、反應物的使用量以及反應物和催化劑的回收再利用上成功最佳化整體反應,此外亦了解以苯甲酸催化之羰基化反應之反應機制,並設計加入三級胺作為助催化劑成功將反應溫度於80 ℃降低至45 ℃,產率亦高達99 %。 第二步熱分解反應中,成功於非極性溶劑正十二烷(Dodecane)中於210 ℃反應2.5小時裂解生成4,4’-MDI,並於抑制劑苯甲醯氯(Benzoyl chloride)的使用量上確立其最低使用量能避免副產物碳二亞胺的生成(Carbodiimide,CDI)並能幫助熱裂解反應的完全性,此外不但能利用蒸餾、結晶等不同的方法簡便的將4,4’-MDI分離出來,產率為75 %,於副產物酚、溶劑正十二烷的回收率皆高達95 %。 透過本非光氣法研究,不但可避免光氣的使用、生成可回收的化學品、減少氯化物的產生以及不純度並以溫和的反應條件製備高產率的4,4’- MDI,在現今追求不破壞環境的綠色時代下,我們希望此製程未來能實際應用於工業上之生產。
A two-step non-phosgene process of making 4,4'-methylene diphenylene diisocyanate (4,4'-MDI) from 4,4'-methylene dianiline (4,4'-MDA) has been developed in this research. In the first step, MDA was treated with diphenyl carbonate (DPC) in the presence of a carboxylic acid to form N,N'-diphenyl-4,4'- methylenediphenylene biscarbamate (4,4'-DP-MDC). This was followed by a hermolysis step to convert into 4,4'-MDI and phenol. In the first carbonylation step of 4,4'-MDA, catalytic behaviors of carboxylic acids were investigated by checking the effects of pKas of the acids used, dosages of the acid, concentration of DPC and recyclability of the acid. Above all, the catalytic mechanism of carboxylic acid in the carbonylation process was clarified and realized that “carbonic carboxylic anhydride” intermediate might be involved and was in-directly proven by the addition of a tertiary amine. Now, in the new improved synthesis, 99% of 4,4'-DP-MDC has been prepared at 45 ℃ instead of 80 ℃. In the second themolysis step, 4,4'-MDI was successfully cracked into MDI and phenol in n-dodecane solution at 210 ℃ over 2.5 hours. A small amount of benzoyl chloride seems essential in preventing MDI from forming carbodimide side-products at 100% conversion. Pure MDI in over 75% were isolated either by vacuum distillation under reduced pressure or through a low temperature crystallization step. About 95% of n-dodecane and phenol could be recovered from the process. Through this non-phosgene route, we have successfully avoided using phosgene completely from the process. It appears that quality of 4,4'-MDI also has been improved showing little halogenated by-products. During this safety and pollution highly conscious time, we hope that this process can be practically applied in the industrial scale.
URI: http://hdl.handle.net/11455/3893
其他識別: U0005-1408201116134500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201116134500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.