Please use this identifier to cite or link to this item:
標題: 固定化螢光染料丹磺醯氯於再生纖維素薄膜及其對芳香族硝基化合物螢光感測性質之研究
mmobilization of 5-(dimethylamino)naphthalene-1- sulfonyl chloride on regenerated cellulose membranes and their sensing properties for aromatic nitro compounds
作者: 于淳安
Yu, Chun-An
關鍵字: 再生纖維素薄膜
Regenerated cellulose membrane
5-(Dimethylamino)naphthalene-1-sulfonyl chloride
Ethylene glycol diglycidyl ether
Fluorescent sensor
出版社: 化學工程學系所
引用: [1] D. K. Roper, E. N. Lightfoot, Separation of biomolecules using adsorptive membranes, Journal of Chromatography A, 702, 3-26 (1995). [2] K. H. Gebauer, J. Thömmes, M.-R. Kula, Plasma protein fractionation with advanced membrane adsorbents, Biotechnology and Bioengineering, 54, 181-189 (1996). [3] C. Charcosset, Purification of proteins by membrane chromatography, Journal of Chemical Technology and Biotechnology, 71, 95-110 (1998). [4] H. Zou, Q. Luo, D. Zhou, Affinity membrane chromatography for the analysis and purification of proteins, Journal of Biochemical and Biophysical Methods, 49, 199-240 (2001). [5] R. Ghosh, Protein separation using membrane chromatography: opportunities and challenges, Journal of Chromatography A, 952, 13-27 (2002). [6] 謝振傑, 光纖生物感測器, 物理雙月刊, 28(4), 704-710 (2006)。 [7] I. Oehme, S. Prattes, O. S. Wolfbeis, G. J. Mohr, The effect of polymeric supports and methods of immobilization on the performance of an optical copper(II)-sensitive membrane based on the colourimetric reagent Zincon, Talanta, 47, 595-604 (1998). [8] V. Nanduri, I. B. Sorokulova, A. M. Samoylov, A. L. Simonian, V. A. Petrenko, V. Vodyanoy, Phage as a molecular recognition element in biosensors immobilized by physical adsorption, Biosensors and Bioelectronics, 22, 986-992 (2007). [9] R. A. Doong, H.-C. Tsai, Immobilization and characterization of sol-gel-encapsulated acetycholinesterase fiber-optic biosensor, Analytica Chimica Acta, 434, 239-246 (2001). [10] C.-G. Niu, A.-L. Guan, G.-M. Zeng, Y.-G. Liu, Z.-W. Li, Fluorescence water sensor based on covalent immobilization of chalcone derivative, Analytica Chimica Acta, 577, 264-270 (2006). [11] R. F. Taylor, J. S. Schultz, Handbook of chemical and biological sensor, Institute of Physics Publsher, 8, 203-215 (1996). [12] C.-X. Jiao, C.-G. Niu, S.-Y. Huan, Q. Shen, Y. Yang, G.-L. Shen, R.-Q. Yu, A reversible chemosensor for nitrite based on the fluorescence quenching of a carbazole derivative, Talanta, 64, 637-643 (2004). [13] C.-G. Niu, P.-Z. Qin, G.-M. Zeng, X.-Q. Gui, A.-L. Guan, Fluorescence sensor for water in organic solvents prepared from covalent immobilization of 4-morpholinyl-1,8-naphthalimide, Analytical and Bioanalytical Chemistry, 387, 1067-1074 (2007). [14] C.-X. Jiao, C.-G. Niu, L.-X. Chen, G.-L. Shen, R.-Q. Yu, A coumarin derivative covalently immobilized on sensing membrane as a fluorescent carrier for nitrofurazone, Analytical and Bioanalytical Chemistry, 376, 392-398 (2003). [15] C. Haensch, S. Hoeppener, U.S. Schubert, Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers, Nanotechnology, 19, 035703-035710 (2008). [16] K. Peter, R. Nilsson, P. Hammarstrom, Luminescent conjugated polymers: illuminating the dark matters of biology and pathology, Advanced Materials, 20, 2639-2645 (2008). [17] M. A. Behlke, L. Huang, L. Bogh, S. Rose, E. J. Devor, Fluorescence and fluorescence applications, Integrated DNA Technologies, (2005). [18] 宋心琦、周福添、劉劍波,光化學,五南圖書公司,台北市,台灣,p14-20, 82-91, 119-146 (2004)。 [19] 謝嘉民、賴一凡、林永昌、方志堯,光激螢光量測的原理、架構及應用,奈米通訊,第12卷,第2期,p28。 [20] 林宗賢,新型有機發光高分子之合成、能量轉移機制研究,碩士論文,國立中央大學化 學研究所,桃園,台灣,(2003)。 [21] 螢光光譜儀與分光光度計比較介紹,上泰儀器股份有限公司。 [22] Y. Liu, K. Ogawa, K. S. Schanze, Conjugated polyelectrolytes as fluorescent sensors, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10, 173-190 (2009). [23] E. Blat, R. C. Chatelier, W. H. Sawyer, Effects of quenching mechanism and type of quencher association on Stern-Volmer plots in compartmentalized systems, Biophysical Journal ,50,349-356(1986). [24] J. Motoyoshiya, Z. Fengqiang, Y. Nishii, H. Aoyama, Fluorescence quenching of versatile fluorescent probes based on strongly electron-donating distyrylbenzenes responsive to aromatic chlorinated and nitro compounds, boronic acid and Ca2+, Spectrochimica Acta Part A, 69 ,167-173, (2008). [25] T. D. Gauthier, E. C. Sham, F. W. F. Guerln, W. R. Seltz, C. L. Grant, Fluorescence quenching method for determining equilibrium constants for polycyclic Aromatic hydrocarbons binding to dissolved humic materialst, Environmetal Science & Technology, 20, 1162-1166 (1986). [26] C. D. Geddes, Optical halide sensing using fluorescence quenching: theory, simulations and applications-a review, Measurement Science & Technology, 12, 53-88 (2001). [27] 陳瞻佑,具合作效應之螢光化學感應器對氟以及特定陰離子感應機制之研究,碩士論文,國立中央大學化學研究所,桃園,台灣,(2003). [28] L. Ding, X. Cui, Y. Han, F. L¨, Y. Fang, Sensing performance enhancement via chelating effect:A novel fluorescent film chemosensor for copper ions, Journal of Photochemistry and Photobiology A: Chemistry, 186, 143-150 (2007). [29] C. R. Lohani, K.-H. Lee, The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors, Sensors and Actuators B, 143, 649-654 (2010). [30] J. Aksuner, E. Henden, I. Yilmaz, A. Cukurovali, A highly sensitive and selective fluorescent sensor for the determination of copper(II) based on a schiff base, Dyes and Pigments, 83, 211-217 (2009). [31] L. Praveen, M. L. P. Reddy, R. L. Varma, Dansyl-styrylquinoline conjugate as divalent iron sensor, Tetrahedron Letters, 51, 6626-6629 (2010). [32] D. Patra, A. K. Mishra, Fluoreacence quenching of benzo[k]fluoranthene in poly (vinyl alcohol) film: a possible optical sensor for nitro aromatic compounds, Sensors and Actuators B, 80, 278-282 (2001). [33] J. Guy, K. Caron, S. Dufresne, S. W. Michnick, W. G. Skene, J. W. Keillor, Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: Elucidation of the maleimide fluorescence quenching mechanism, American Chemical Society, 129, 11969-11977 (2007). [34] A.-J. Tong, Y.-G. Wu, L.-D. Li, Room-temperature phosphorimetry studies of some addictive drugs following dansyl chloride labelling, Talanta, 43, 1429-1436 (1996). [35] K. Fatyeyevaa, J. Bigarréc, B. Blondelc, H. Galianoc, D. Gaudd, M. Lecardeurc, F. P. Epaillarda, Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application, Journal of Membrane Science, 366, 33-42 (2011). [36] T. Tanabe, K. Touma, K. Hamasaki, A. Ueno, Fluorescent cyclodextrin immobilized on a cellulose membrane as a chemosensor system for detecting molecules, Analytical Chemistry, 73,1877-1880 (2001). [37] W. R. Gray, Methods in enzymology, 11, 139-151 (1967). [38] S. C. Miller, Profiling sulfonate ester stability: identification of complementary protecting groups for sulfonates, Journal of Organic Chemistry, 75, 4632-4635 (2010). [39] T. Suenaga, C. Schutz, T. Nakata, A real time reaction monitoring using fluorescent dansyl group as a solid-phase leaving group, Tetrahedron Letters, 44, 5799-5801 (2003). [40] K. J. Shea, D. Y. Sasaki, and G. J. Stoddard, Fluorescence probes for evaluating chain solvation in Network Polymers. An analysis of the solvatochromic shift of the dansyl probe in macroporous styrene-divinylbenzene and styrene-diisopropenylbenzene copolymers, Macromolecules, 22, 1722-1730 (1989). [41] J. G. Benito, A. Aznar, J. Baselga1, Solvent and temperature effects on polymer-coated glass fibers. Fluorescence of the dansyl moiety, Journal of Fluorescence, 11, 307-315 (2002). [42] S. Pandey, G. A. Baker, M. A. Kane, N. J. Bonzagni, F. V. Bright, On the microenvironments surrounding dansyl sequestered within class I and II xerogels, Chemistry of Materials, 12, 3547-3551 (2000). [43] P. Dinake, P. E. Prokhorova, V. S. Talanov, R. J. Butcher, G. G. Talanova, A new fluorogenic calix[4]arene N-dansylcarboxamide in the cone conformation for selective optical recognition of mercury(II), Tetrahedron Letters, 51, 5016-5019 (2010). [44] S. Pagliari, R. Corradini, G. Galaverna, S. Sforza, A. Dossena, R. Marchelli, Enantioselective sensing of amino acids by copper(II) complexes of phenylalanine-based fluorescent [45] L. Ding, J. Kang, F. Lü, L. Gao, X. Yin, Y. Fang, Fluorescence behaviors of 5-dimethylamino-1-naphthalene-sulfonylfunctionalized self-assembled monolayer on glass wafer surface and its sensing properties for nitrobenzene, Thin Solid Films, 515, 3112-3119 (2007). [46] T. T. Thompson, M. I. L. Bastarrachea, M. J. A. Vega, Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid), Carbohydrate Polymers, 62, 67-73 (2005). [47] S.-Y. Suen, S.-Y. Lin, H.-C. Chiu, Effects of Spacer Arms on Cibacron Blue 3GA Immobilization and Lysozyme Adsorption Using Regenerated Cellulose Membrane Discs, Industrial & Engineering Chemistry Research, 39, 478-487 (2000). [48] S. Alila, S. Boufi, Removal of organic pollutants from water by modified cellulose fibres, Industrial Crops and Products, 30, 93-104 (2009) [49] Z. F. Papp, U. Demel, G. P. Tilz, Laser scanning confocal fluorescence microscopy: an overview, International Immunopharmacology, 3, 1715-1729 (2003). [50] U. Reichert, T. Linden, G. Belfort, M.-R. Kula, Visualising protein adsorption to ion-exchange membranes by confocal microscopy, Journal of Membrane Science, 199, 161-166 (2002). [51] S. Tasker, J. P. S. Badyal, S. C. E. Bakson, R. W. Richards, Hydroxyl accessibility in cellulose, Polymer, 35, 4717-4721 (1994). [52] D. Xiaoa, J. Hua, M. Zhangb, M. Lia, G. Wanga. H. Yaoa, Synthesis and characterization of camphorsulfonyl acetate of cellulose, 339, 1925-1931 (2004). [53] T. Heinze, T. Liebert, Unconventional methods in cellulose functionalization, Progress in Polymer Science, 26, 1689-1762 (2001). [54] L. Ruangchuaya, J. Schwankb, A. Sirivata, Surface degradation of a-naphthalene sulfonate-doped polypyrrole during XPS characterization, Applied Surface Science, 199, 128-137 (2002). [55] E. C. Buruiana, A. L. Chibac, T. Buruiana, Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film, Journal of Photochemistry and Photobiology A: Chemistry, 213, 107-113 (2010). [56] H. Li, J. Kang, L. Ding, F. L¨u, Y. Fang, A dansyl-based fluorescent film: Preparation and sensitive detection of nitroaromatics in aqueous phase, Journal of Photochemistry and Photobiology A: Chemistry 197, 226-231 (2008).
摘要: 本研究利用再生纖維素薄膜做為基材,對其表面之氫氧基以化學方法固定化螢光分子,達到做為螢光偵測器的應用。本研究將螢光分子加上延伸臂固定化於再生纖維素薄膜表面,成功地對其表面改質並進行螢光感測的應用。實驗選用5-(二甲氨基)萘-1-磺醯氯(丹磺醯氯)做為螢光染料,因其具有強的螢光發光性、敏感性及大的史托克位移,並對氫氧基有高度反應性。另以乙二醇二缩水甘油醚(EGDGE)做為延伸臂,一方面可降螢光分子與薄膜表面非均相反應的障礙,另可增加OH基之數量以提高可反應點。成功改質後的再生纖維素薄膜分別以ATR-FTIR、螢光光譜儀、共軛交螢光顯微鏡做定性及半定量的分析,以求出化學反應改質的最佳條件。本研究發現接有螢光染料的纖維素薄膜可以有效針對含有硝基的芳香族化合物做低濃度2~10 ppm的感測,如4-nitrophenol, 4-nitrobenzoic acid 、4-nitrodiphenyl ether與nitrobenzene。與其他感測器相較具有快速、測量方式簡易等優點。
In this study, fluorescent dye was coupled onto the surface of regenerated cellulose membrane to form a fluorescent sensor. 5-(Dimethylamino) naphthalene-1-sulfonyl chloride (DANS-Cl) was used because of its high fluorescent intensity, sensitivity, and big Stokes shift. Ethylene glycol diglycidyl ether (EGDGE) was adopted as the spacer arm for connecting the OH groups of membrane and the sulfochloride group of DANS-Cl, as well as decreasing the steric effect. The DANS-Cl coupled membranes were characterized by ATR-FTIR, fluorescence spectrophotometer, and laser scanning confocal microscope. The fluorescent quenching results show that the modified membranes are sensitive to the presence of 4-nitrophenol, 4-nitrobenzoic acid, 4-nitrodiphenyl ether and nitrobenzene. The Stern-Volmer plots are found to be linear in the concentration range from 2 to 10 ppm.  
其他識別: U0005-1708201112423400
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.