Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3905
標題: 高分散性奈米金屬粒子於奈米碳管之製備,特性分析及應用
Highly dispersed metal nanoparticles on carbon nanotubes: synthesis, characterization, and application
作者: 戴永銘
Dai, Yong-Ming
關鍵字: Carbon Nanotube
奈米碳管
Chemical Vapor Deposition
Functionalization
Metal Nanoparticles
化學氣相沉積法
官能基化
金屬奈米粒子
氧化一氧化碳
出版社: 化學工程學系所
引用: 1. C.J. Murphy, N.R. Jana, Adv. Mater.14, 80, (2002). 2. Y.W. Cao, R. Jin, C.A. Mirkin, J. Am. Chem. Soc. 123, 7961, (2001). 3. P. Ball, L. Garwin, Nature, 355, 1673, (1992) 4. S. Iijima, Nature 354, 56, (1991). 5. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997). 6. J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, et al., Diamond Relat Mater., 9(3-6), 1270 (2000). 7. H.G. Dai, Surf. Sci. 500, 218 (2000) 8. V. Brigitte, P. Alain, C. Claude, C. Sauder, R. Pailler, J. Catherine, B. Patrick, P. Philippe, Science 290, 1331, (2000). 9. Y. Saito, Carbon 33, 979, (1995). 10. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smally, Chem. Phys. Lett., 243, ,(1995). 11. R. Sen, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett., 267, 276, (1997). 12. S. Fan, M.G. Chaplin, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512, (1999). 13. C.J. Lee, J. Park, Appl. Phys. Lett., 77, 3397, (2000). 14. Z.F. Ren, Z.P. Huang, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105, (1998). 15. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett., 77, 830, (2000). 16. M.A. Ermakova, D. Yu. Ermakov, L.M. Plyasova, G.G. Kuvshinov, Catal. Lett., 62, 93, (1999). 17. P.E. Anderson, N.M. Rodriguez, J. Mater. Res., 14, 2912, (1999). 18. A.S. Johansson, J.O. Carlsson, Thin Solid Film, 261, 52, (1995). 19. C. Gautier, E. Frackowiak, B. Bonnamy, F. Beguim, Electrochem. Soc. Proc. 8, 12, (1998). 20. Y.H. Mo, A.K.M.F. Kibria, K.S. Nahm, Syn. Mater. 122, 443, (2001). 21. C.H. Kiang, J. Chem. Phys. 113, 4763, (2000). 22. A.N. Andriotis, M. Menon, G. Froudakis, Phys. Rev. Lett. 85, 3193, (2000). 23. C.M. Chen, Y.M. Dai, J.G. Huang, J.M. Jehng, Carbon, 44, 1808, (2006). 24. J.M. Jehng, W.C. Tung, C.H. Kuo, J. Porous. Mater., 15, 43, (2008). 25. H.L. Hsua, J.M. Jehng, Y.S. Li., C. Wang, S.R. Yang, Mater. Chem. Phys., 109, 148, (2008). 26. H.L. Hsua, J.M. Jehng, Mater. Sci. Eng. C, 29, 55, (2009). 27. I.W. Chiang, R.E. Smalley, J.L. Margrave, R.H. Hauge, J. Phys. Chem. B, 106, 1157, (2001). 28. T. Tohji, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuya, T. Ohsuna, K. Hiraga, Y. Nishina, Nature, 383, 679 (1996). 29. E.E. Dujardin, A. Krishnan, M.M.J. Treacy, Adv. Mater., 10, 611, (1998). 30. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, J. Mater. Chem., 17, 2679, (2007). 31. X.G. Hu, S.J. Dong, J. Mater. Chem., 18, 1279, (2008). 32. G.G. Wildgoose, G.E. Banks, R.G. Compton. Small, 2(2), 182, (2006). 33. B.h. Wu, Y.J. Kuang, X.H. Zhang, J.H. Chen. Nano Today, 6, 75, (2011). 34. L. Qu, L. Dai, J. Am. Chem. Soc., 127, 10806, (2005). 35. K. Dai, L.Y. Shi, J.H Fang, Y.Z. Zhang, Mater. Sci. Eng. A 465, 283, (2007). 36. K.N. Lin, W.J. Liou, T.Y. Yang, H.M. Lin, C.K. Lin, S.H. Chien, W.C. Chen, S.H. Wu, Diamond & Relat. Mater. 18, 312, (2009) . 37. A. Chu, J. Cook, R. J. R. Heesom, J. L. Hutchison, M. L. H. Green, J. Sloan, Chem. Mater., 8, 2751, (1996). 38. N. Soin, S.S. Roy, L. Karlsson, J.A. McLaughlin, Diamond Relat Mater., 19, 595 (2010). 39. D. Gingery, P.e Bu¨ hlmann, Carbon, 26, 1966, (2008) 40. X.R. Ye, Y.H. Lin, C.G Wang, M. H. Engelhard, Y. Wang, C. M. Wai , J. Mater. Chem., 14, 908, (2004). 41. L. Chen, G. Lu, Electrochim. Acta, 53, 4316, (2008). 42. Z. Guo, Y.T. Chen, L.S. Li, X.M. Wang, G. L. Haller, Y.H. Yanga, J. Catal., 276 314, (2010) . 43. R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C.Marhic, J.L. Duvail, Eur. J. Inorg. Chem., 610, (2003). 44. B.M. Kim and W.G. M. Sigmund, Langmuir, 20, 8239, (2004) 45. L. Liu, T.X. Wang, J.X. Li, Z.X. Guo, L.M. Dai, D.Q. Zhang, Chem Phys. Lett,367, 747, (2003). 46. X.H. Ma, N. Lun, S.L. Wen, Diamond Relat. Mater., 14, 68, (2005) . 47. N. Rajalakshmi, Hojin Ryu, M.M. Shaijumon, S. Ramaprabhu, J. Power Sources 140, 250,(2005). 48. L. Li, G. Wu, B. Q. Xu, Carbon, 44, 2973, (2006). 49. C.L. Xu, J.F. Chen, Y. Cui, Q.Y. Han, H. Choo, P.K. Liaw, Adv Eng Mater., 8, 73,(2006). 50. G, Lin, L, Ruitao, H, G. Du, B.H. Li, F.Y Kang, Carbon, 44, 1833, (2006). 51. R. J. Mohan, A. M. Shanmugharaj, R. S. Hun, J. Biomed. Mater. Res B: Appl. Biomater, 96 B, 119, (2010). 52. Y. M. Dai, T. C. Pan, W. J. Liu, J. M. Jehng, 2011, ApplCatal B:, 103, 221 (2011), 221. 53. Y.Y. Mu, H.P. Liang, J.S. Hu, L. Jiang, L.J. Wan. J. Phys. Chem. B, 109, 22212, (2005). 54. Y.C. Xing, Langmuir, 21, 4185, (2005). 55. C. H. Chen, C.C. Huang, Microporous Mesoporous Mater, 109, 549, (2008). 56. W. T. Tung, Doctoral thesis, National Chung Hsin University, Department of Chemical Engineering, 2008 57. A. T. Chidembo, K.I. Ozoemen, Bolade O. Agboola, V. Gupta, G. G. Wildgoose, R. G. Compton, Energy Environ. Sci., 3, 228, (2010). 58. W.C. Liu master thesis, National Chung Hsin University, Department of Chemical Engineering, 2008. 59. J.M. Kneller, R.J. Soto, S.E. Surber, J.-F. Colomer, A.Fonseca, J.B. Nagy, G. Van Tendeloo, T. Pietrab, J. Am. Chem. Soc., 122, 10591 (2000) 60. J. Jia, Y. Wang, E. Tanabe, T. Shishido, K. Takehira, Microporous Mesoporous Mater. 57, 283 (2003). 61. W. Li, S. Xie, L. Qian, B. Chang, B. Zou, W. Zhou, R. Zhao, G. Wang, Science 264, 1701 (1996). 62. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catal. A 199, 245 (2000). 63. P. Wang, E. Tanabe, K. Ito, J. Jia, H. Morioka, T. Shishido, K. Takehira, Appl.Catal. A 231, 35, (2002). 64. K. Otsuka, S. Kobayashi, S. Takenaka, Appl. Catal. A 210, 371, (2001). 65. Suryanarayana C. Prog. Mater Sci., 46(1-2) , 1, (2001). 66. F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, Solid State Ionics, 32-33, 198, (1989). 67. M.S. Hegde, D. Larcher, D. Beaudoin, Solid State Ionics, 93(1-2), 33, (1997). 68. S Ayyappan, R Srinivasa-Gopalan, G.N. Subbanna, C.N.R. Rao. J Mater Res., 12(2), 398, (1997). 69. Q.M. Gong, Z. Li, Y. Wang, B. Wu, Z. Zhang, J. Liang, Mater. Res. Bull. 42, 474, (2007). 70. M. Perez-Cabero, I. Rodriguez-Ramos, A. Guerrero-Ruiz, J. Catal. 215, 305 (2003). 71. P. Y. Silvert, R. Herrera.-Urbinab, K. Tekaia-Elhsissen, J. Mater. Chem., 7, 293 (1997). 72. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. SouzaFilho, R. Saito, Carbon, 40, 2043, (2002) 73. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, Carbon 42, 2867, (2004) 74. L Ni, K Kuroda, L.P. Zhou, T. Kizuka, K. Ohta, K. Matsuishi, Carbon, 44, 2265 (2006). 75. L. Ni, K. Kuroda, L.P. Zhou, K.H Ohta, K.Matsuishia,Junji Nakamuraa, Carbon, 47, 3054, (2009). 76. S. C. Pang, M. A. Anderson and T. W. Chapman, J. Electrochem. Soc., 147, 444, (2000). 77. C. Arbizzani, M. Mastragostino, L. Meneghello, Electrochim. Acta, 41, 21 (1996). 78. S. Sarangapani, B. V. Tilak, C. P. Chen, J. Electrochem. Soc. 143, 3791, (1996). 79. X. Dong, H. B. Zhang, G. D. Lin, Y. Z. Yuan, K. R. Tasi, Catal. Lett., 85, 237, (2003). 80. J. J. Zhao, A. Buldum, J. Han, P. Lu, Nano Later, 13,195, (2002). 81. R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, D. H. Wu, J. Power Sources 84, 126, (1999). 82. L. C. Wang, D. Liang, T. Wang, X. Wu, J. Hu, X. J. Liang, Powder Technol. 142 175, (2004). 83. Y. D. Li, L. Q. Li, H. W. Liao, H. R.Wang, J. Mater. Chem., 9, 2675, (1999). 84. M. C. Paiva, B. Zhou, K. A. S. Fernando, Y. Lin, J. M. Kennedy, Y. P. Sun, Carbon, 42, 2849 (2004). 85. K. Fu, H. P. Li, B. Zhou, A. Kitaygorodskiy, L. F. Allard, Y. P. Sun, J. Am. Chem. Soc., 126,4669, (2004). 86. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch, J. Am. Chem. Soc., 124,760, (2002). 87. H. L. Hsu, J. M. Jehng, Mate. Sci. Eng. C 29, 55, (2009). 88. Z. Jin, K. P. Pramoda, S. H. Goh, G. Xu, Mater. Res. Bull. 37, 271, (2002). 89. Y. C. Tsai, S. C. Li, J. M. Chen, Langmuir, 21, 3653 (2005). 90. H. Qi, C. Zhang, X. Li, Sens Actuators B, 114, 364, (2006). 91. C. G. Liua, Y. S. Lee, Y. J. Kima, I. C. Song, J. H. Kima, Synth. Met., 159, 2009 (2009). 92. A. K. Cuentas-Gallego, R. Martı'nez-Rosales, M. Baibarac, P. Go'mez-Romero, M. E. Rinco'n, Electrochem., Commun., 9, 2088, (2007). 93. J.C. Charlier, Acc. Chem., Res., 35, 1063, (2002). 94. O. Korotkikh, R. Farrauto, Catal. Today, 62, 249, (2000). 95. I. H. Son, M. Shamsuzzoha, A. M. Lane, J. Catal., 210, 460, (2002). 96. T. Utaka, K. Sekizawa, K. Eguchi, Appl. Catal. A, 194-195, 21, (2000). 97. C. Guldur, F. Balikci, Int. J. Hydrogen Energy, 27, 219, (2002). 98. M. Kotobuki, A Watanabe, H. Uchida, H. Yamashita, M. Watanabe, Appl Catal A, 307, 275, (2006). 99. M. Haruta, N. Yamada, T. Kobayashi, S. Lijima, J. Catal., 115, 301, (1989). 100. A. K. Tripathi, V. S. Kamble, N. M. Gupta, J. Catal., 187, 332, (1999). 101. R. Xu, X. Wang, D. S. Wang, K. B. Zhoy, Y. D. Li, J. Catal., 237, 426, (2006). 102. R. Lin,W. P. Liu, Y. J. Zhong, M. F. Luo, Appl. Catal. A, 220, 165, (2001). 103. W. F. Yan, S. M. Mahurin, B. Chen, S. H. Overbury, S. Dai, J. Phys. Chem. B, 109, 15489, (2005). 104. A. Q. Wang, C.M. Chang, C. Y. Mou, J. Phys. Chem. B, 109, 18860, (2005). 105. D. J. Guo, H. L. Li, Carbon, 43, 1259, (2005). 106. Z. M. El-Bahy, Mater. Res. Bull, 42, 2170, (2007). 107. H.G. Liu, D. Ma, R. A. Blackley, W. Z. Zhou, X. H. Bao, Chem. Commun., 2677 2008. 108. A. Sep
摘要: 摘要 將高分散性及大小均一金屬奈米粒子覆載於載體上的仍然具有高度之挑戰性。將金屬覆載在於奈米碳管上,可提高其表面活性,進一步應用於特定的催化反應。在這篇論文中,主要分為三個研究部分:第一部分、利用合金觸媒在化學氣相沉積反應製備大量奈米碳管; 第二部分純化和功能化所製備成之奈米碳管; 第三部分將高分散及大小均一金屬奈米粒子覆載於表面改質前後之奈米碳管上並測試其催化活性。 第一部分、利用合金觸媒在化學氣相反應製備大量奈米碳管 在第二章中利用化學的醇還原法來製備成長奈米碳管之奈米介金屬合金觸媒粉末(NiMg、CoMg、FeMg)及利用化學氣相沉積法來合成所需要的奈米碳管。由實驗結果,化學氣相沉積法所生成之奈米碳管之徑約20-40nm,屬於多層奈米碳管。利用鎳鎂合金觸媒在化學氣相沉積下合成奈米碳管,在923K 通入甲烷與氫氣,熱裂解30分鐘,奈米碳管產量可達932%之產率 第二部分:純化及官能基化的奈米碳管 在第三章,純化結果顯示,將奈米碳管初產物以空氣氧化及鹽酸處理後,奈米碳管之純度幾乎可達到100%,純化後奈米碳管的產量達到78%其純度約為100%。再利用硝酸活化奈米碳管,可以增加奈米碳管之表面積並提高奈米碳管的表面性質。利用循環伏安法來評估活化後的奈米碳管。使用硝酸活化後的奈米碳管表面積可以提高到145m2/g。由循環伏安法結果得知,未活化的奈米碳管其比電容值為 8.86(F/g),由硝酸活化後奈米碳管可得到比電容值22.64(F/g),提升約2.56倍的比電容量。因此,活化過後的奈米碳管增加其表面活性,而使得比電容值增加。 第三部分:高分散性及大小均一金屬奈米粒子覆載於奈米碳管上並測試其催化活性。 在第四章中,將純化過後未改質之奈米碳管,利用多元醇法及十二烷基硫酸鈉控制Pt在奈米碳管上之粒子大小。由實驗結果得知,在0.5wt%十二烷基硫酸鈉濃度下,Pt粒子在奈米碳管上的大小約為4nm。Pt粒子的大小和分散性隨著十二烷基硫酸鈉的濃度變化會有所改變,在0.5wt%十二烷基硫酸鈉濃度下將Pt負載於奈米碳管上於低溫一氧化碳氧化反應上,明顯優於其他十二烷基硫酸鈉濃度。 在第五章中,採用簡單而容易的方法將高分散的奈米Ag粒子覆載於硝酸改質過後之奈米碳管上。硝酸處理過後的奈米碳管,表面產生含氧的官能基,這些含氧官能基能成為一個活性中心,藉由表面的官能基化,奈米Ag粒子很容易附著在官能基化後之奈米碳管,表面產生含氧官能基有利於合成高分散性奈米Ag粒子。另外,較小及高分散的奈米Ag銀粒子於官能基化後的奈米碳管上,在低溫下氧化一氧化碳有很好的效果。
Abstract Synthesis of highly dispersed metal nanoparticles (NPs) on the supports with uniform NPs size still remains a challenge. Loaded the carbon nanotube (CNTs) with metal, could improve the functionality, compatibility and reactivity of the surface, further endow the spheres with specific catalytic. In this thesis, there are three major research parts: A) high-yield synthesis of CNTs over a metal alloy catalyst by thermal chemical vapor deposition; B) purification and functionalization of the CNTs; C) synthesis of highly dispersed metal NPs onto CNTs and the catalytic performances of these new materials. Part A: High-yield synthesis of CNTs over a metal alloy catalyst by thermal chemical vapor deposition In Chapter Two, Synthesis of CNTs by the catalytic decomposition of methane over various alloy catalysts (polyol process method prepared). Characterization of the catalysts and the products was performed by chemical analyses, X-ray diffraction (XRD), and transmission electron microscopy (TEM). CNTs were grown by thermal chemical vapor deposition (TCVD) of CH4 by using the alloy catalyst. The optimum carbon yield for growing CNTs in MgNi alloy in this study is determined by using MgNi alloy catalyst to perform the CH4 pyrolysis. The highest yield of CNTs growth can reach up to about 932 % for the pyrolysis of CH4 at 923K for 30 min with the presence of hydrogen in the reaction stream. Part B: Purification and functionalization of the CNTs In Chapter Three, CNTs were grown by TCVD of CH4 by using NiMg as the catalyst. High-purity CNTs were achieved after the purification procedures with the air oxidation at 450 oC and hydrochloric acid (HCl) treatments, the final purified yield and purity of CNT reach to 78% and 100% respectively. The CNTs was treated with HNO3 to increase their surface area and improve their properties. Cyclic voltammetry (CV) was used to evaluate the optimize conditions of the modified CNT for the higher specific capacitance. The FTIR results show that after the activated treatment by HNO3, CNTs possess -CO and -OH functional groups, where as the HRTEM results show that the surface of the CNTs becomes rough. After the activity treatments, the CNTs surface area increases to 145m2/g. The CV performance of the modified CNT has shown that the specific capacitance increases from 8.9 to 22.6 F/g. Thus, the modification of the CNT improves the surface properties and increases their capacitance. Part C: Synthesis of highly dispersed metal NPs onto CNTs and the catalytic performances of these new materials. In Chapter Four, The Pt/ PCNTs were synthesized by the polyol process as a function of sodium dodecyl sulfate (SDS) concentration to control the Pt NPs size. The Pt NPs size and the extent of dispersion were strongly dependent on the SDS concentration. The physical properties and structural information of the Pt/PCNTs were further characterized by TGA, XRD, and TEM. The results of TEM and XRD have revealed that the Pt/PCNT prepared by the polyol process at The Pt/PCNTs catalyst prepared of SDS concentration of 0.5 wt% possessing a uniform dispersion and particle size within the range of 4nm. The Pt/PCNTs catalyst prepared of SDS concentration of 0.5 wt% exhibited better exhibits higher activity with regard to CO oxidation reaction compared to the other preparation SDS concentration catalysts. In Chapter Five, A simple and easy method has applied to prepare a highly dispersed Ag (NPs) on modified carbon nanotubes (MCNTs). The Ag NPs were easily attached to the MCNT support by anchoring them to the functional groups. Oxygen functionalities on the HNO3-activated MCNT surface provide nucleation centers for metal ions and can stabilize metal NPs on the support surface. This is an essential process for obtaining highly dispersed Ag NPs on MCNTs due to the presence of surface oxygen-containing functional groups. In addition, the Ag NP active sites with a smaller particle size and higher dispersion rate exhibit higher activity for CO oxidation at low reaction temperatures. The catalytic results suggest that the Ag/MCNTs catalysts have a high potential for application in low-temperature CO oxidation.
URI: http://hdl.handle.net/11455/3905
其他識別: U0005-1708201114040600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201114040600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.