Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3910
標題: 對苯二酚衍生異質雙官能基高分子中間體之合成及應用
Synthesis of Hydroquinone Derived Dual Functional Polymer Intermediates and Applications
作者: 廖宜哲
Liao, Yi-Zhe
關鍵字: 對苯二酚異質雙官能基中間體
hydroquinone-dual functional polymer intermediate
交替式合成
精準聚胺酯硬鏈段
窄分子量分佈
熱交聯中間體
交聯高分子
iterative synthesis
precise length PU hard-segment
narrow molecular weight distribution
heat-curable intermediate
crosslinkable polymers
出版社: 化學工程學系所
引用: 1.Schuur, M.; Feijen, J.; Gaymans, R. J. Polymer 2005, 46, 4584. 2.Washio, I.; Shibasaki, Y.; Ueda, M. Macromolecules 2005, 38, 2237. 3.Kuo, M.-C.; Jeng, R.-J.; Su, W.-C.; Dai, Shenghong A. Macromolecules 2008, 41, 682. 4.Wang, S.; Wang, J.; Liu, T.; Mo, Z.; Zhang, H.; Yang, D.; Wu, Z. Macromol. Chem. Phys. 1997, 198, 969. 5.Haddleton, David M.; Sahota, Hardeep S.; Taylor, Paul C.; Yeates, Stephen G. J. Chem. Soc., Perkin Trans. 1996, 1, 649. 6.陳星儒. 國立中興大學化學工程學系碩士論文, 2009. 7.郭明杰. 國立中興大學化學工程學系博士論文, 2009. 8.蘇哲民. 國立中興大學化學工程學系碩士論文, 2009. 9.John G. Woods; Susanne Morrill; Ciaran B. McArdle, US Patent 6,231,714, 2001. 10.向紀明; 柳林; 金華峰 精細石油化工 2003, 1, 47. 11.張智勇; 陶婉芳; 施耀曾; 陳普蘇 應用化學 1994, 11, 14. 12.Anil K. Kinage; Sunil P. Gupte; Rajiv K. Chaturvedi; Raghunath V. Chaudhari Catalysis Communications 2008, 9, 1649. 13.Guichun Yang; Zuxing Chen; Zhaojun Zhang; Xiaoling Qiu Synthetic Communications 2002, 32, 3637. 14.席海濤; 孫小強; 何光裕; 江蘇石油化工學院學報 2001, 13, 1. 15.Dai, S. H.; Lin, C. Y.; Rao, D. V.; Stuber, F. A.; Carlecton, P. S.; Ulrich, H. J. Org. Chem. 1985, 50, 1722. 16.Krabbenhoft, H. O. US Patent 4,346,249, 1982. 17.Ito, H.; Willson, C. G.; Frechet, J. M. J.; Farrall, M. J.; Eichler, E. Macromolecules 1983, 16, 510. 18.Kato, N.; Morimoto, Y.; Ozawa, H. US Patent 4,202,805, 1980. 19.Crivello, J. V.; Lai, Y. L. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 653. 20.Fujiwara, H.; Takahashi, A; Miyamoto, M. US Patent 4,032,513, 1977. 21.Corson, B. B.; Heintzelman, W. J.; Schwartzman, L. H.; Tiefenthal, H. E.; Lokken, R. J.; Nickels, J. E.; Atwood, G. R.; Pavlik, F. J. J. Org. Chem. 1958, 23, 544. 22.Schnell, H.; Krimm, H. Angew. Chem. Int. Ed. Engl. 1963, 2, 373. 23.Krimm, H.; Schnell, H. DE 1235894, 1967. 24.Dai, Shenghong A. US Patent 4,720,584, 1988. 25.Williamson, A. W. J. Chem. Soc. 1852, 4, 229. 26.Imai, Y.; Abe, S.; Ueda, M. J. Polym. Sci., Polym. Chem. Ed. 1981, 19, 3285. 27.Lindley, J. Tetrahedron 1984, 40, 1433. 28.Theil, F. Angew. Chem. Int. Ed. 1999, 38, 2345. 29.Weingarten, H. J. Org. Chem. 1964, 29, 977. 30.林信佑. 國立中興大學化學工程學系博士論文, 2010. 31.林照興. 國立中興大學化學工程學系博士論文, 2008. 32.Harrell, L. L., Jr Macromolecules 1969, 2, 607. 33.Philip J. Woodward; Daniel Hermida Merino; Barnaby W. Greenland; Ian W. Hamley; Zoe Light; Andrew T. Slark; Wayne Hayes Macromolecules 2010, 43, 2512. 34.J. H. Saunders; K. C. Frisch Polyurethanes: Chemistry and Technology, Part.I Chemistry; Interscience: New York, 1962, 150. 35.S. Matushita Recent Advances and Trend in Polyurethanes 1996, 17, 81. 36.W. Y. Chiang; S. C. Chan J.Appl. Polym. Sci. 1987, 34, 127. 37.C. F. Bartelink; M. De Pooter; H. J. M. Grunbauer; U. Beginn; M. Moller J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2555. 38.C. P. Reghunadhan Nair; R. L. Bindu; K. Krishnan; K. N. Ninan European Polymer Journal, 1999, 35, 235. 39.Tarek Agag; Tsutomu Takeichi Macromolecules, 2001, 34, 7257. 40.David A. Langlois; Brian C. Benicewicz Chem. Mater. 1998, 10, 3393. 41.Oku, A.; Tanaka, S.; Hata, S. Polymer 2000, 41, 6749. 42.John H. Clements Ind. Eng. Chem. Res. 2003, 42, 663. 43.Selva, M.; Marques, Carolos A.; Tundo, P. J. Chem. Soc. Perkin Trans. 1994, 1, 1323. 44.Woo, Edmund P. US Patent 4,507,492, 1985. 45.蔡佑書. 國立中興大學化學工程學系碩士論文, 2010. 46.Grenier-Loustalot, M. F.; Sanglar, C. Eur. Polym. J. 1997, 33 , 1125.
摘要: 本研究以低價的工業原料雙酚A (Bisphenol A,BPA) 作為起始物,透過逐步式的化學合成四步驟法,已成功發展出多種含對苯二酚(Hydroquinone,HQ) 結構之異質雙官能基高分子中間體(Dual functional intermediates),分別為第一步由BPA 進行熱裂解得4-異丙烯基酚(4-Isopropenyl phenol,4-IPP) 與酚(Phenol) 並分餾純化得高純度4-IPP,第二步由4-IPP 的酚基進行第一次官能基化得IPP 衍生物,第三步由IPP 衍生物利用過氧化氫(Hydrogen peroxide) 進行氧化得單官能基HQ 衍生物,第四步由新形成的酚基之單官能基HQ 衍生物進行第二次官能基化即可得異質雙官能基HQ 衍生物。此四步驟法中,每步驟皆已成功合成並開發出多種之雙官能基中間體,且步驟簡單且高效率、高產率,總產率達56% 以上。 利用前面所製備的異質雙官能基中間體,利用其結構兩醇類自身反應性的差異,搭配交替式合成策略,可精準合成具有線性胺酯基衍生物之一元醇及二元醇,且都具有高產率、高純度、窄分子量分佈等特點。為了證明此二元醇之功用,將它作為硬鏈段鏈延長劑合成聚胺酯彈性體PU1,利用PU1 與加入相同配方但未預先合成硬鏈段鏈延長劑之聚胺酯PU2 比較,PU1 在Td與機械性質皆較佳,其原因為硬鏈段有序的排列導致結晶較佳所造成相分離的現象而有此差異。 在另一對苯二酚異質雙官能基中間體應用,利用一端為醇基(Alcohol) 與多元異氰酸鹽(Polyisocyanates) 及多元醯氯(Polyacid chlorides) 反應可得胺酯類(Urethane) 與酯類(Ester) 鍵結且末端留有多功能性之炔丙基醚類(Propargyl ether) 熱交聯中間體,且產率皆在90% 之上。並將此類熱交聯中間體塗佈在玻璃基材上進行熱交聯反應,其中只有酯類系統之炔丙基醚類進行熱交聯反應,且熱交聯溫度高於200 oC而形成交聯聚合物。熱交聯後增加其熱性質及機械性質,尤其在硬度測試中,可提升至184.3 秒。 藉由本研究部分應用上的研究,將更能展現此由BPA 化學合成四步驟法,所衍生異質雙官能基中間體之精準性及實用性,未來可開發多樣式之高分子材料,帶來嶄新的應用價值。
This research used an inexpensive commodity chemical, bisphenol A (BPA), as the starting material to synthesize several dual functional intermediates of hydroquinone (HQ) in four consecutive steps. In the first step, BPA was cracked into isopropenyl phenol (IPP) and separated from phenol. This is followed by the first functionalization reactions of IPP at its phenolic hydroxyl group to give isopropenyl phenyl ethers. Then, the intermediates were oxidized at isopropenyl group with hydrogen peroxide to give mono-functionalized HQ derivatives. In the final step, newly generated phenolic groups were again converted into the final products by the second functionalization. Efficient high yield synthesis were achieved in each step in this straightforward strategy with overall yields of >56% for the entire four steps. The usefulness of dual functional intermediate was exemplified by synthesis of linear urethane monol and diol, it through iterative syntheses based on reactivity difference of two hydroxyl groups. In all these step-wise syntheses, high selectivity, high purity and low dispersity have been achieved. In order to demonstrate utility of diol, it was used as a hard-segment extender in the preparation of polyurethane elastomers, PU1. PU1 was found to have substantial superior performances in Td and mechanical properties over the PU2 which was prepared with the same basic components in the PU formulation but without pre-making of the ordered extender. The formation of distinctive phase-segregations in PU1 due to aggregate of the ordered hard segments is believed to be the major cause of the differences. In another application of dual functional HQ was subjected to react with polyisocyanates or polyacid chlorides at its ethoxylated alcohol site in making multiple functional propargyl poly-intermediates with either urethane or ester linkages. The yields of these four intermediates are all well over 90%. These compounds were then spread as a thin films on glasses and thermally cured. Since the curing reaction of propargyl groups occurred only at a temperature of over 200 oC, only ester were found to cured to form cross-linked polymers with enhanced thermal and mechanical properties. Particularly, the hardness increased 184.3 sec. in a hardness test. Through this reseach, the four-step synthetic methodology developed can make many different dual functional intermediates for testings in precision syntheses and applications in the future.
URI: http://hdl.handle.net/11455/3910
其他識別: U0005-1807201111402800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201111402800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.