Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3915
標題: 以固定化海藻糖合成酶生產海藻糖之研究
Immobilization of recombinant trehalose synthase for the production of trehalose
作者: 程子鈞
Cheng, Tzu- Chun
關鍵字: trehalose synthase
海藻糖合成酶
出版社: 化學工程學系所
引用: 1. Schiraldi, C.; Di Lernia, I.; De Rosa, M. Trehalose production: exploiting novel approaches. Trends Biotechnol. 2002, 20, 420-425. 2. Elbein, A. D.; Pan, Y. T.; Pastuszak, I.; Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 2003, 13, 17-27. 3. Brennan, P. J.; Nikaido, H. The envelope of mycobacteria. Annu.ReV. Biochem. 1995, 64, 29-63. 4. Puech, V.; Chami, M.; Lemassu, A.; Laneelle, M. A.; Schiffler, B.; Gounon, P.; Bayan, N.; Benz, R.; Daffe, M. Structure of the cell envelope of corynebacteria: importance of the noncovalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 2001, 147, 1365-1382. 5. Eastmond, P. J.; Graham, I. A. Trehalose metabolism:a regulatory role for trehalose-6-phosphate? Curr. Opin. Plant Biol. 2003, 6, 231-235. 6. Gancedo, C.; Flores, C. L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004, 4, 351-359. 7. Wingler, A.; Fritzius, T.; Wiemken, A.; Boller, T.; Aeschbacher, R. A. Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol. 2000, 124, 105-114. 8. Chen, Q.; Behar, K. L.; Xu, T.; Fan, C.; Haddad, G. G. Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance. J. Biol. Chem. 2003, 278, 49113-49118. 9. Kandror, O.; DeLeon, A.; Goldberg, A. L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci U.S.A. 2002, 99, 9727-9732. 10. Purvis, J. E.; Yomano, L. P.; Ingram, L. O. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. EnViron. Microbiol. 2005, 71, 3761-3769. 11. Benaroudj, N.; Lee, D. H.; Goldberg, A. L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001, 276, 24261- 24267. 12. T. Novel functions and applications of trehalose. Pure Appl. Chem. 74(7):1263-1269. 2002. 13. Chen YS, Lee GC, Shaw JF. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 2006;54:7098-7104. 14. Lide, David R.. Handbook of Chemistry and Physics. 87. Boca Raton, FL: CRC Press. 1998: 3-534. ISBN 0849305942. 15. 莊榮輝 (1991) Biochemistry Basics. 16. Lenchinger, A.L. Principles of Biochemistry 1982: Worth publishers, Inc. 209-210. 17. Broderick, J.B., Coenzymes and Cofactors in Encyclopedia of Life Sciences. 2001, John Wiley & Sons, Inc. 18. Jaeger KE, Eggert T.. Enantioselective biocatalysis optimized by directed evolution.. Curr Opin Biotechnol.. 2004, 15(4): 305–313. PMID 15358000. 19. Fischer E.. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dt. Chem. Ges.. 1894, 27: 2985–2993. 20. Michaelis L., Menten M.. Die Kinetik der Invertinwirkung. Biochem. Z.. 1913, 49: 333–369. English translation Accessed 6 April 2007. 21. Schiraldi, C.; Di Lernia, I.; De Rosa, M. Trehalose production: exploiting novel approaches. Trends Biotechnol. 2002, 20, 420- 425. 22. Cabib, E.; Leloir, L. F. The biosynthesis of trehalose phosphate. J. Biol. Chem. 1958, 231, 259-275. 23. Maruta, K.; Nakada, T.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci., Biotechnol.. Biochem. 1995, 59, 1829-1834. 24. Nakada, T.; Maruta, K.; Tsusaki, K.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci., Biotechnol., Biochem. 1995, 59, 2210-2214. 25. Nakada, T.; Maruta, K.; Mitsuzumi, H.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci., Biotechnol., Biochem. 1995, 59, 2215-2218. 26. Nishimoto, T.; Nakano, M.; Ikegami, S.; Chaen, H.; Fukuda S.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Existence of a novel enzyme converting maltose into trehalose. Biosci., Biotechnol.. Biochem. 1995, 59, 2189-2190. 27. Buchholz, K., Reaction engineering parameters for immobilized biocatalysts. 1982, Springer Berlin / Heidelberg. p. 39-71. 28. Cabral, J.M.S. and J.F. Kennedy, Thermostability of Enzymes, M.N. Gupta, Editor. 1993, Springer Verlag: Berlin. p. 163-179. 29. Gupta, Editor. 1993, Springer Verlag: Berlin. p. 163-179. Analytical Biochemistry, 1979. 93: p. 1-25. 30. Katchalski-Katzir, E., Immobilized enzymes -- learning from pastsuccesses and failures. Trends in Biotechnology, 1993. 11(11): p. 471-478. 31. Guisan, J.M., ed. Immobilization of enzymes and cells. 2 ed. 2006, Humana Press: New Jersey. 32. Sheldon, Roger A., Enzyme Immobilization: The Quest for Optimum Performance. Advanced Synthesis & Catalysis, 2007. 349(8-9): p. 1289-1307. 33. Chaplin, M.F. and C. Bucke, Enzyme Technology 1990: PressSyndicate of the University of Cambridge. 34. Braun, S., S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Biochemically active sol-gel glasses: the trapping of enzymes. Materials Letters, 1990. 10(1-2): p. 1-5. 35. Avnir, D., S. Braun, O. Lev, and M. Ottolenghi, Enzymes andOther Proteins Entrapped in Sol-Gel Materials. Chemistry of Materials, 1994. 6(10): p. 1605-1614. 36. Engler, C.R., A.G. III, and S. Oh, Cellulase immobilization on Fe3O4 and characterization. Biotechnology and Bioengineering, 1989. 33(3): p. 321-326. 37. Fumihide Shiraishi Journal of Fermentation and Bioengineering, Volume 79, Issue 4, 1995, Pages 373-377. 38. Cao, L., L.v. Langen, and R.A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free? Current Opinion in Biotechnology, 2003. 14(4): p. 387-394. 39. Gupta, P., K. Dutt, S. Misra, S. Raghuwanshi, and R.K. Saxena, Characterization of cross-linked immobilized lipase from thermophilic mould Thermomyces lanuginosa using glutaraldehyde. Bioresource Technology, 2009. 100(18): p. 4074-4076. 40. Busto, M.D., N. Ortega, and M. Perez-Mateos, Stabilisation of cellulases by cross-linking with glutaraldehyde and soil humates. Bioresource Technology, 1997. 60(1): p. 27-33. 41. Sheldon, R.A., Cross-linked enzyme aggregates (CLEA®s):stableand recyclable biocatalysts. Biochemical Society Transactions, 2007. 035(6): p. 1583-1587. 42. Tischer, W. and V. Kasche, Immobilized enzymes: crystals or carriers? Trends in Biotechnology, 1999. 17(8): p. 326-335. 43. Bryjak, J. and B.N. Kolarz, Immobilisation of trypsin on acrylic copolymers. Process Biochemistry, 1998. 33(4): p. 409-417. 44. Martinek, K., A.M. Klibanov, V.S. Goldmacher, and I.V. Berezin, The principles of enzyme stabilization I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica et Biophysica Acta (BBA) - Enzymology, 1977. 485(1): p. 1-12. 45. Methods in biotechnology—immobilization of enzymes and cells; Edited by G F Bickerstaff. pp 367. Humana Press, New Jersey. 1996 ISBN 0-89603-386-4. 46. 徐裕翔, 以聚丙烯腈奈米纖維膜固定化脂肪分解酶應用於三酸甘油酯水解酵素製程開發之研究. 2006, 國立成功大學:台南. 47. 謝孟鋼, 酵素法生產N-乙醯甘露醣胺之研究. 2009, 國立中興大學: 台中. 48. 顏敏智, 以固定化酵素生產L-同苯丙胺酸. 2007, 國立中興大學: 台中. 49. Seip, J.E., S.K. Fager, J.E. Gavagan, D.L. Anton, and R. Di Cosimo, Glyoxylic acid production using immobilized glycolate oxidase and catalase. Bioorganic & Medicinal Chemistry, 1994. 2(6): p. 371-378. 50. Sheldon, Roger A., Enzyme Immobilization: The Quest for Optimum Performance. Advanced Synthesis & Catalysis, 2007. 349(8-9): p. 1289-1307. 51. Katchalski-Katzir, E. and D.M. Kraemer, Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic, 2000. 10(1-3): p. 157-176. 52. Messing, R.A., Immobilized Enzymes for Industrial Reactors. 1975, London: Academic Press. 53. Immobilized biosystems—theory and practical applications. Edited by I. A. Veliky & R. J. C. McLean, Blackie Academic and Professional, London, 1994,ISBN 0 7514 0175 7. 54. Tsung-Ta Wu, Sung-Chyr Lin, Jei-Fu Shaw, Integrated Process for the Purification and Immobilization of Recombinant Trehalose Synthase for Trehalose Production. 55. Helena Block, Barbara Maertens, Anne Spriestersbach,Nicole Brinker,Jan Kubicek,Rol and Fabis, JorgLabahn,and FrankSchafer Immobilized-MetalAffinity Chromatography (IMAC): A Review Methods in Enzymology, Volume463( 2009) 439-473. 56. A. Ballesteros, F.J. Plou, J.L. Iborra and P.J. Hailing 1998 Elsevier Science B.V. All rights reserved. Stability and Stabilization of Biocatalysts. 57. Bruins ME, Janssen AEM, Boom RM. Thermozymes and their applications : a review of recent literature and patents. Appl Biochem Biotechnol 2001; 90:155–86. 58. Luckarift HR, Spain JC, Naik RR, Stone MO. Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 2004;22:2113. 59. Ying Ma , Lu Xue , Da-Wen Sun. Characteristics of trehalose synthase from permeablized Pseudomonas putida cells and its application in converting maltose into trehalose. Available online 15 August 2005. Journal of Food Engineering 77 (2006) 342–347 60. Koh S, Shin HJ, Kim JS, Lee DS, Lee SY. Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnol Lett 1998;20:757-761.
摘要: 海藻糖是一種天然的多功能雙糖。本研究將菌種Picrophilus torridus所生產的海藻糖合成酶,結合純化跟酵素固定化的步驟來生產海藻糖。商業膠體Eupergit C 被選為此研究的固定化基材。經純化後的P. torridus海藻糖合成酶,自由態跟固定化酵素的最適操作pH值均為pH 6,最佳反應溫度皆為50oC,並未隨著酵素作固定化操作而改變。不過,經由固定化操作的酵素展現出較好的溫度耐抗性,在反應溫度為70 oC時,固定化的酵素相較於自由態(4.1 %)能保有較高的殘餘活性59.5 % 。在最大海藻糖轉換率方面從實驗結果得知不論是固定化酵素還是自由態酵素的反應皆與反應基質濃度的高低無關,於最適反應操作50oC、pH 6時,海藻糖最大的轉化率接近60%。對於固定化後批次反應的『可重複使用性』,固定化酵素在重複24個循環操作下依然能保有92.8 %的初始活性。在連續式操作方面,將進料流速控制在0.1ml/min時可得到最大海藻糖的轉化率41.7%。
Trehalose is a kind of natural functional disaccharide. In this study an integrated process following the concomitant purification and immobilization of recombinant trehalose synthase from Picrophilus torridus for the production of trehalose was established. Eupergit C was selected as a carrier in this work. The purified recombinant P. torridus TSase (PTTS) showed that the optimum pH and temperature of 6.0 and 50 °C, respectively, were not alternated upon immobilization. Nevertheless, the immobilized activity did exhibit the higher tolerance of temperature. A higher residual activity of 59.5% was observed for the immobilized enzyme under 70 oC whereas it was 4.1% for free enzyme. The maximum conversion rate of maltose to trehalose by both free and immoblized enzyme was independent upon the substrate concentration under the optimum reaction conditions, in which the yield of approximately 60% for trehalose was obtained. The reusability of the immobilized enzyme in a batch reactor was also studied and we found that the immobilized enzyme maintained approximately 92.8% of residual activity after 24 cycles. While using the continuous packed-bed reactor, a maximum yield of 41.7% for trehalose has been reached from 100 mM maltose with a flow rate of 0.1 ml/min.
URI: http://hdl.handle.net/11455/3915
其他識別: U0005-1808201111025300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201111025300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.