Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3917
標題: 四氧化三鐵的合成與應用於幹細胞的標定
Synthesis and Characterization of Fe3O4 Nanoparticles and their Applications in Stem Cell Labeling
作者: 曾庭箴
Tseng, Ting-Chen
關鍵字: MRI
MRI
Fe3O4
magnetic nanoparticles
cytotoxicity
chitosan
四氧化三鐵
磁性奈米粒子
細胞毒性
幾丁聚醣
出版社: 化學工程學系所
引用: [1] 都有為、鍾偉著,磁性液體性質及應用,南京大學物理系 [2] Deer W. A., Howie, R. A., and Zussman, An Introduction to the Rock-forming Minerals, 2nd ed., 1992. p. 558-569. [3] 鄭豐裕,四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用.國立成功大學,化學研究所,博士論文, 2006. [4] Dyal A., K. Loos, M. Noto, S. W. Chang,C. Spagnoli, K. V. P. M. Shafi, A. Ulman, M. Cowman and R. A. Gross, Activity of Candida rugosa Lipase Immobilized on r-Fe2O3 Magnetic Nanoparticles. J Am Chem Soc, 2003. 125(7): p. 1648-85. [5] Huang S. H., M. H. Liao and D. H. Chen, Direct binding and characterization of lipase onto magnetic nanaparticles. Biotechnol. Prog.,2003. 19(3): p. 1095-1100. [6] Suzuki M., M. Shinkai, M. Yanase, A. Ito, H. Honda and T. and Kobayashi, Enhancement of uptake of magnetoliposomes by magnetic force and hyperthermic effect on tumor. Jpn J Hyperthermic Oncol, 1999. 15(2): p.79-87. [7] Shinkai M., Functional magnetic particles for medical application. J Biosci Bioeng, 2002. 94(6): p. 606-13. [8] Nagatani N., M. Shinkai, Y. Nagase, H. Honda, K. Hata, H. Mizuno, M. Ueda, T. Kobayashi, Gene delivery for genetically engineered mucosal cells with enhanced function. Biotechnol Lett, 2000. 22(12): p. 999-1002. [9] Davies M. J., J. I. Taylor, N. Sachsinger, I. J. Bruce, Isolation of Plasmid DNA Using Magnetite as a Solid-Phase Adsorbent. Analytical Biochemistry, 1998. 262(1): p. 92-94. [10] Tong X. D., B. Xue, Y. Sun, A Novel Magnetic Affinity Support for Protein Adsorption and Purification. Biotechnol. Prog., 2001. 17(1): p. 134-139. [11] Huh Y. M., Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc, 2005. 127(35): p.12387-12391. [12] Jun Y. W., Y. M. Huh, J. S. Choi, J. H. Lee, H. T. Song, S. Kim, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh and J. Cheon, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc, 2005. 127: p. 5732-5733. [13] Veiseh O., C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J.Olson and M. Zhang, Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas. Nano Lett, 2005. 5(6): p. 1003-1008. [14] Perez J. M., F. J. Simeone, A. Tsourkas, L. Josephson and R. Weissleder, Peroxidase Substrate Nanosensors for MR Imaging. Nano Lett, 2004. 4(1): p. 119-122. [15] Son S. J., J. Reichel, B. He, M. Schuchman and S. B. Lee, Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery. J Am Chem Soc, 2005. 127 (20): p. 7316–7317. [16] Manning H. C., T. Goebel, R. C. Thompson, D. J. Bornhop, Targeted Molecular Imaging Agents for Cellular-Scale Bimodal Imaging. Bioconjugate Chem., 2004. 15 (6): p.1488-1495. [17] Kohler N., G. E. Fryxell and M. Zhang, A Bifunctional Poly(ethylene glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting Agents. J Am Chem Soc, 2004. 126(23): p. 7206-7211. [18] Weissleder R., G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele and L. Josephson, Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology, 1990. 175: p. 489-493. [19] 張昱彬,幾丁聚醣奈米金及奈米銀複合材料之物理性質與生物相容性,國立中興大學,化學工程研究所,碩士論文, 2007. [20] Rhoades J., S. Roller, Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Enviro. Microbio., 2000. 66: p. 80-86. [21] Kuen Y. L., S. H. Wan, H. P. Won, Blood compatibility and biodegradability of partially N-acetylated chitosan derivatives. Biomaterials, 1995. 16: p. 1211-1216. [22] Clair C., D. Olide, D. Alain, Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 2001. 22: p.261-268. [23] Kratz G., C. Arnander, J. Swedenborg, M. Back, C. Falk, I. Gouda, O. Larm, Heparin-chitosan complexes stimulate wound healing in human skin. Scand J Plast Reconstr Surg Hand Surg, 1997. 31: p.119-123. [24] Mi F. L., S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, R. N. Huang, Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 2001. 22: p. 165-173. [25] Miyazaki S., K. Ishii, T. Nadai, The use chitin and chitosan as drug carriers. Chem Pharm Bull, 1981. 29: p. 3067-3089. [26] Aiedeh K., E. Gianasi, I. Orienti, V. Zecchi, Chitosan microcapsules as controlled release system for insulin. J Microencapsul, 1997. 14: p. 567-576. [27] Giunchedi P., I. Genta, B. Conti, R. Muzzareli, Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials, 1998. 19: p.157-161. [28] Muzzareli R., G. Biagini, A. Pugnaloni, O. Filippini, V. Baldassarre, C. Castalidini, C. Rizzoli, Restruction of periodontal tissue with chitosan. Biomaterials, 1989. 10: p. 598-603. [29] Muzzareli R., V. Baldassarre, F. Conti, P. Ferrara, G. Biagini, G. Gazzanelli, V. Vasi, Biological activity of chitosan: ultrastructural study. Biomaterials, 1998. 9: p. 247-252. [30] Sundararajan V. M., W. T. M. Howard, Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999. 20: p.1133-1142. [31] Roller S., N. Covill, The antifingal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol, 1999. 47: p.67-77. [32] Cho Y. S., G. S. Choi, S. Y. Hong, and D. Kim, Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition. J Crystal Growth, 2002. 243: p. 224-229. [33] 陳澄佑,磁性流體的研製. 國立清華大學,材料科學與工程研究所,碩士論文,1993. [34] Cavicchi R. E. and R. H. Silsbee, Coulomb Suppression of Tunneling Rate from Small Metal Particles. Phys. Rev. Lett, 1984. 52(16): p. 1453-1456. [35] 陳珮紋,利用Fe3O4磁性顆粒處理化學機械研磨廢水. 國立中央大學,環境工程研究所,碩士論文, 2004. [36] Mahmoudi M., A. Simchi, A.S. Milani, P. Stroeve, Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid and Interface Science, 2009. 336: p. 510-518. [37] Chen Y. H., I. J. G. Wang and T. H. Young, Formation of Keratocyte Spheroids on Chitosan-Coated Surface Can Maintain Keratocyte Phenotypes. Tissue Eng Part A, 2009. 15(8): p. 2001-2013. [38] Haipeng G., Z. Yinghui, L. Jianchun, G. Yandao, Z. Nanming and Z. Xiufang, Studies on nerve cell affinity of chitosanderivedmaterials. J Biomed Mater Res, 2000. 52(2): p. 285-295. [39] Garcia A. J., M. D. Vega and Boettiger, D. Modulation ofcell proliferation and differentiation through substratedependentchanges in fibronectin conformation. Mol Biol Cell, 1999. 10(3): p. 785-798. [40] Keselowsky B.G., D. M. Collard and A. J. Garcia, Integrinbinding specificity regulates biomaterial surface chemistryeffects on cell differentiation. Proc Natl Acad Sci USA, 2005. 102(17): p. 5953-5957. [41] Cheng M., J. Deng, F. Yang, Y. Gong, N. Zhao and X. Zhang, Study on physical properties and nerve cell affinityof composite films from chitosan and gelatin solutions. Biomaterials, 2003. 24(17): p. 2871-2880. [42] Ngankam A. P., G. Mao and P. R. van Tassel, Fibronectinadsorption onto polyelectrolyte multilayer films. Langmuir, 2004. 10(8): p. 3362-3370. [43] Cuy, J. L., B. L. Beckstead, C. D. Brown, A. S. Hoffman and C. M. Giachelli, Adhesive protein interactions with chitosan:consequences for valve endothelial cell growth on tissue eengineering materials. J Biomed Mater Res A, 2003. 67(2): p. 538-547. [44] Mailander V. and K. Landfester, Interaction of Nanoparticles with Cells. Biomacromolecules, 2009. 10(9): p. 2379-2400. [45] Stebelska K., P. M. Dubielecka, A. F. Sikorski, The effect of PS content on the ability of natural membranes to fuse with positively charged liposomes and lipoplexes. J Membr Biol, 2005. 206(3): p. 203-214. [46] Montet-Abou K., X. Montet, R. Weissleder, L. Josephson, Transfection agent induced nanoparticle cell loading. Mol Imaging, 2005. 4(3): p. 165-171. [47] Arbab A. S., G. T. Yocum, L. B. Wilson, A. Parwana, E. K. Jordan, H. Kalish, J. A. Frank, Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging, 2004. 3(1): p. 24-32. [48] Ju S., G. Teng, Y. Zhang, M. Ma, F. Chen, Y. Ni, In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging, 2006. 24(5): p. 611-617. [49] Mailänder V., M. R. Lorenz, V. Holzapfel, A. Musyanovych, K. Fuchs, M. Wiesneth, P. Walther, K. Landfester, H. Schrezenmeier, Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol, 2008. 10(3): p.138-146. [50] Shiu J. Y., C. W. Kuo, W. T. Whanga and P. Chen, Observation of enhanced cell adhesion and transfection efficiency on superhydrophobic surfaces. Lab Chip, 2010. 10(5): p. 556-558. [51] Chen S., R. X. Zhuo, S. X. Cheng, Enhanced gene transfection with addition of a cell-penetrating peptide in substrate-mediated gene delivery. J Gene Med, 2010. 12(8): p. 705-713. [52] Reaa J. C., R. F. Giblya, N. E. Davisb, A. E. Barronb and L. D. Shea, Engineering Surfaces for Substrate-Mediated Gene Delivery Using Recombinant Proteins. Biomacromolecules, 2009. 10(10): p. 2779–2786. [53] 游宗儒, 張雅惠,王雲銘, 磁振造影對比劑之發展簡介與研究趨勢. 化學 第六十七卷第二期,p. 165-177.
摘要: 核磁共振造影術(Magnetic resonance imaging, MRI)是使用強大的磁場、電腦和無線電波,可以在不用開刀的狀況下獲得身體內器官和結構的詳細影像,而磁性奈米粒子可提高背景與固態質量之間的對比,使其在判斷上更加的精準。本研究製備出表面帶有官能基的四氧化三鐵Fe3O4磁性奈米粒子,進一步用TEM、XRD、FT-IR等實驗分析其基本物理性質,並進行細胞相關測試。結果發現,我們可成功製備出粒徑小且帶有特定官能基的四氧化三鐵磁性奈米粒子,在一定濃度下奈米粒子對細胞無毒性,生物相容性良好,且奈米粒子可以順利進入幹細胞內,另外利用幾丁聚醣的基材可使幹細胞對於奈米粒子的攝入量提高。最終欲將奈米氧化鐵延伸在生物醫學方面的應用,標定幹細胞並且追蹤作為未來之用。
Magnetic resonance imaging (MRI) is a technique that can provide detailed signals of the internal organs of human body or test animals. Superparamagnetic iron oxide nanoparticles (SPION) can serve as the contrast agent in MRI. In this syudy, Fe3O4 magnetic nanoparticles (NPs) were prepared and characterized by trasmission electron microscope (TEM), x-ray diffraction (XRD), and fourier transform infrared spectrum (FT-IR).The cytotoxicity and cellular uptake of Fe3O4 NPs by mouse neural stem cells (mNSC) and rat adiposed-derived adult mesenchymal stem cells (rADAS) were evaluated. Results showed that Fe3O4 NPs were successfully synthesized. Cytotoxicity to mNSC and rADAS were not observed at lower concentrations (< 100 ppm). NPs could be taken up by the mNSC and rADAS. We found that culturing mNSC and rADAS on chitosan membranes increased the uptake of Fe3O4 NPs. We expected to use Fe3O4 NPs in stem cells labeling and tracking in the future.
URI: http://hdl.handle.net/11455/3917
其他識別: U0005-2007201112495900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007201112495900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.