Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3920
標題: 以聚醚碸/蒙脫土複合薄膜為三明治結構離子液體薄膜之支撐層應用於氣體輸送
Gas transport using polyethersulfone(PES)/ montmorillonite(MMT) composite membranes as an ionic liquid membrane support in sandwich form
作者: 梁家毓
Liang, Chia-Yu
關鍵字: gas permeation
聚醚碸複合薄膜
polyethersulfone
composite membrane
liquid membrane
ionic liquid
液膜
離子液體
出版社: 化學工程學系所
引用: [1]S. Yoo, J. Won, S. W. Kang, Y. S. Kang and S. Nagase, CO2 separation membranes using ionic liquids in a Nafion matrix, J. Membrane Sci. 363 (2010)72- 79. [2]W. Zhao, G. He, L. Zhang, J. Ju, H. Dou, F. Nie, C. Li and H. Liu, Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2, J. Membrane Sci. 350 (2010) 279-285. [3]S.-P. Yan, M.-X. Fang, W.-F. Zhang, S.-Y. Wang, Z.-K. Xu, Z.-Y. Luo and K.-F. Cen, Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting, Fuel Process. Technol. 88 (2007) 501-511. [4]A. Ito, S. Duan, Y. Ikenori, A. Ohkawa, Permeation of wet CO2/CH4 mixed gas through a liquid membrane supported on surface of a hydrophobic microporous membrane, Sep. Purif. Technol. 24 (2001) 235-242. [5]L. Baoa, M. C. Trachtenberg, Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline, J. Membrane Sci. 280 (2006) 330-334. [6]P. Bernardo, E. Drioli and G. Golemme, Membrane gas separation: a review/State of the art, Ind. Eng. Chem. Res. 48 (2009) 4638-4663. [7]B. Zornoza, C. Tellez and J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation, J. Membrane Sci. 368 (2011) 100-109. [8]T.-H. Weng, H.-H. Tseng and M.-Y. Wey, Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane, J. Membrane Sci. 369 (2011) 550-559. [9]H. Hasbullah, S. Kumbharkar, A.F. Ismail and K. Li, Preparation of polyaniline symmetric hollow fiber membranes and investigation towards gas separation performance, J. Membrane Sci. 366 (2011) 116-124. [10]A. L. Khan, X. Li and I. F.J. Vankelecom, Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes, J. Membrane Sci. 372 (2011)87- 96. [11]S.-H. Choi, J. C. Jansen, F. Tasselli, G. Barbieri and E. Drioli, In-line formation of chemically cross-linked P84R co-polyimide hollow fibre membranes for H2/CO2 separation, Sep. Purif. Technol. 76(2011)132-139. [12]B. Shimekit, H. Mukhtar, T. Murugesan, Prediction of the relative permeability of gases in mixed matrix membranes, J. Membr. Sci. 373 (2011) 152-159. [13]L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62 (1991) 165-185. [14]L. M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390-400. [15]A. K. Itta, H.-H. Tseng and M.-Y. Wey, Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation, J. Membrane Sci. 372 (2011) 387-395. [16]B. T. Low and T. S. Chung, Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture, Carbon 49 (2011) 2104-2112. [17]J. Schauer, A. Sikora, M. Pliškova, J. Mališ, P. Mazur, M. Paidar and K. Bouzek, Ion-conductive polymer membranes containing 1-butyl-3- Methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium methanesulfonate, J. Membrane Sci. 367 (2011) 332-339. [18]J.-F. Li, Z.-L. Xu, H. Yang, L.-Y. Yu and M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Appl. Surf. Sci. 255 (2009) 4725-4732. [19]G. Defontaine, A. Barichard, S. Letaief, C. Feng, T. Matsuura and C. Detellier, Nanoporous polymer - Clay hybrid membranes for gas separation, J. Colloid Inter. Sci. 343 (2010) 622-627. [20]D.D. Iarikova, P. Hacarlioglua and S.T. Oyama, Supported room temperature ionic liquid membranes for CO2/CH4 separation, Supported room temperature ionic liquid membranes for CO2/CH4 separation, Chem. Eng. J. 166 (2011) 401-406. [21]P. Cserjesi, N. Nemestothy and K. Belafi-Bako, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J. Membrane Sci. 349 (2010) 6-11. [22]P. Scovazzo, Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membrane Sci. 343 (2009) 199-211. [23]F.J. Hernandez-Fernandez, A.P. de los Rios, F. Tomas-Alonso, J.M. Palacios and G. Villora, Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability, J. Membrane Sci. 341 (2009) 172-177. [24]L.J. Lozano, C. Godinez, A.P. de los Rios, F.J. Hernandez-Fernandez, S. Sanchez-Segado and F.J. Alguacil, Recent advances in supported ionic liquid membrane technology, J. Membrane Sci. 376 (2011) 1-14. [25]M. A. Malik, M. A. Hashim, F. Nabi, Ionic liquids in supported liquid membrane technology, Chem. Eng. J. 171 (2011) 242-254. [26]Y. Li, T.-S. Chung, Z. Huang and S. Kulprathipanja, Dual-layer polyethersulfone (PES)/ BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation, J. Membr. Sci. 277 (2006) 28-37. [27]Y. Li, H.-M. Guan, T.-S. Chung and S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes, J. Membr. Sci. 275 (2006) 17-28. [28]L. Ge, Z. Zhu and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Sep. Purif. Technol. 78 (2011) 76-82. [29]E. Karatay, H. Kalıpcılar and L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes, J. Membr. Sci. 364 (2010) 75-81. [30]P. Uchytil, R. Petrickovic and A. Seidel-Morgenstern, Transport of butane in a porous Vycor glass membrane in the region of condensation pressure, J. Membr. Sci. 293 (2007) 15-21. [31]G. Wu, S. Gan, L. Cui and Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Appl. Surf. Sci. 254 (2008) 7080-7086. [32]R.-Y. Lin, B.-S. Chen, G.-L. Chen, J.-Y. Wu, H.-C. Chiu and S.-Y. Suen, Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption, J. Membr. Sci. 326 (2009) 117-129. [33]A. Garcia, S. Eceolaza, M. Iriarte, C. Uriarte and A. Etxeberria, Barrier character improvement of an amorphous polyamide (Trogamid) by the addition of a nanoclay, J. Membr. Sci. 301 (2007) 190-199. [34]S. K. Choudhari and M. Y. Kariduraganavar, Development of novel composite membranes using quaternized chitosan and Na+-MMT clay for the pervaporation dehydration of isopropanol, J. Colloid Interface Sci. 338 (2009) 111-120. [35]F. Moghadam, M.R. Omidkhah, E. Vasheghani-Farahani, M.Z. Pedram and F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties ofMatrimid5218-based mixed matrix membranes, Sep. Purif. Technol. 77 (2011) 128-136. [36]J.-J. Qin and T.-S. Chung, Effects of orientation relaxation and bore fluid chemistry on morphology and performance of polyethersulfone hollow fibers for gas separation, J. Membrane Sci. 229 (2004) 1-9. [37]Y. Liu, C. Cao, T.-S. Chung and K.P. Pramoda, Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation, J. Membrane Sci. 245 (2004) 53-60. [38]L. Jiang, T.-S. Chung, D.-F. Li, C. Cao and S. Kulprathipanja, Fabrication of Matrimid/ polyethersulfone dual-layer hollow fiber membranes for gas separation, J. Membrane Sci. 240 (2004) 91-103. [39]G.C. Kapantaidakis and G.H. Koops, High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation, J. Membrane Sci. 204 (2002) 153-171. [40]G.C. Kapantaidakis, G.H. Koops and M. Wessling, Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends, Desalination, 145 (2002) 353-357. [41]D.-F. Li, T.-S. Chung, R. Wang and Y. Liu, Fabrication of fluoropolyimide/ polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation, J. Membrane Sci. 198 (2002) 211-223. [42]D. Wang, K. Li and W.K. Teo, Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive, J. Membrane Sci. 176 (2000) 147-158.
摘要: 本研究將分成兩個不同主題並討論。第一部分為藉由相轉換法製備聚醚碸/蒙脫土和聚醚碸/二氧化鈦兩種複合薄膜,薄膜的厚度約為25 um,並進行結晶結構、熱穩定性、薄膜型態、氣體滲透性結果之分析。在X光繞射分析儀、示差掃描熱量分析儀、熱重分析儀的結果顯示高分子聚醚碸與蒙脫土或者二氧化鈦等奈米顆粒之間有作用力存在,且複合薄膜的熱穩定性藉由加入奈米顆粒而改善。於薄膜基本性質之分析完成後,本研究將探討二氧化碳及甲烷氣體於複合薄膜中的傳送。 本研究中可發現,二氧化碳及甲烷的滲透性會隨著蒙脫土摻混比例的增加而增加,而氣體選擇性隨蒙脫土摻混比例上升而下降。氣體滲透於摻混二氧化鈦的薄膜中並無太大的改變量,氣體滲透性隨二氧化鈦含量的上升而先升後降,於二氧化鈦含量為20%達到最高值,而氣體選擇性則隨二氧化鈦比例的增加而先升後降,於二氧化鈦含量為4%時達到最高值。 第二部分的研究為使用PES/30% MMT 複合薄膜為支撐層並用三種不同的離子液體製備三明治結構之支撐液膜,氣體滲透利用和第一部分相同的儀器及方式進行量測。三種離子液體的二氧化碳滲透性約為1.5-3.5 barrer,而甲烷之滲透性0.035-0.091 barrer,和使用相同離子液體的文獻值比較,其滲透性太低,但選擇性則幾乎高於所有的文獻值,可能因為支撐液膜的結構不同而導致此結果。
This research was distributed into two different topics and discussed. In first part, PES/montmorillonite (MMT) and PES/TiO2 composite membranes were successfully prepared via phase inversion method. The thicknesse of these composite membranes were about 25 μm. The crystal structure, thermal stability, morphology, permeation performance were characterized in detail. XRD, DSC and TGA results showed that the interaction existed between MMT or TiO2 nanopaticles and PES and the thermal stability of the composite membrane had been improved by the addition of these nanopaticles. The transport of carbon dioxide and methane through these composite membranes has been discussed. The gas permeation measurements were conducted using a semi-open cell which is divided into two parts by the membrane. A constant pressure was maintained at the feed side, while a vacuum was created at the permeate side in the beginning of experiment. The CO2 or CH4 permeability increased in case of PES/MMT membrane with growing different contents, and the selectivity decreased with increasing MMT content. The PES/TiO2 membrane did not show any significant change in permeability. The permeability of both gases increased then decreased with increasing TiO2 content ,the highest value of CO2 and CH4 about 5.7 and 0.33 barrer were obtained at PES/20% TiO2. With growing TiO2 content, the separation factor increased than decreased. The highest value was about 38.5 at PES/4% TiO2. In second part, three different kinds of ionic liquid were prepared into a supported liquid membrane in sandwich form using PES/30% MMT as a support. The gas permeation was determined by using the same instrument with first part. The permeability of carbon dioxide of these three ionic liquid were about 1.5-3.5 barrer, and the permeability of methane were about 0.035-0.091 barrer. It`s very low for comparing with some literature using the same ionic liquid. But the selectivity was almost higher than some reference. It seem`s that the result was led because of the configuration of supported liquid membrane.
URI: http://hdl.handle.net/11455/3920
其他識別: U0005-2208201115175500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201115175500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.