Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3924
標題: 氧化鋅擔持於奈米碳管之觸媒製備及其光催化活性之研究
Preparation and Photocatalytic Activity of ZnO Supported on Carbon Nanotubes
作者: 吳至軒
Wu, Chih-Hsuan
關鍵字: photocatalytic reaction
光催化反應
photocatalyst
ZnO
carbon nanotubes
precipitation method
光觸媒
氧化鋅
奈米碳管
沉澱法
出版社: 化學工程學系所
引用: 1. C. H. Hsu, D. H. Chen, “Preparation and Characterization of Zinc Oxide Nanopowers” ,(2006) . 2. J. H. Lee, M. H. Hon, “Growth and characterization of ZnO nanorod arrays by aqueous solution method ” ,(2009) . 3. K. C. Yu, J. S. Li, “The Photocatalysis of Cr (VI) by UV-TiO2/ZnO ” ,(2008) . 4. Huang. “Characterization of Reactive-Spittered Copper doped ZnO Thin Films ” ,(2006) . 5. H. Y. Chung, S. J. Chen, “Preparation and Charaterization of Heterogeneous Ag/ZnO” ,(2009) . 6. Y. H. Chuang, Y. J. Lin, “Preparation and Optical Properties of ZnO Thin Films from Aqueous Solutions” ,(2009) . 7. E. D. Guerreiro, O. F. Gorriz, G. Larsen, L. A. Arrua, “Cu/SiO2 catalysts for methanol to methyl formaye dehydrogenation A comparative study using different preparation techniques” , Applied Catalysis A :General 204 (2000) 33-48. 8. “Sythesis and Photocatalytic Activity of Titania Catalyst Supported on Carbon Nanotudes by Sol-Gel Method” , (2011) 國立中興大學化工所 陳冠璋碩士論文 . 9. W. W. Lu, S. Y. Gao, J. J. Wang, “One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance” , J. Phys. Chem. C 112 (2008) 16792-16800. 10. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors”, Journal of Photochemistry and Photobiology A: Chemistry, 85 (1995) 247-255. 11. S Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354 (1991) 56-58. 12. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter” , Nature, 363 (1993) 603-605. 13. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls” Nature, 363 (1993) 605-607. 14. 洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1 期,第23-30 頁,2002。 15. M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33 (1995) 883-891. 16. V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering, 43 (2004) 61-102. 17. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238 (1972) 37-38. 18. R. W. Matthews, “Photooxidation of organic impurities in water using thin films of titanium dioxide” , Journal of Physical Chemistry, 91 (1987) 3328-3333. 19. L. Jing, B. Wang, B. Xin, S. D. Li, K. Y. Shi,W. M. Cai, H. G. Fu, “Investigations on the surface moditication of ZnO nanoparticle photocatalyst by depositing Pd” , Journal of Solid State Chemistry 177 (2004) 4221-4227. 20. S. Wang, X. L. Shi, G. Q. Shao, X. L. Duan, H. Yang, T. G. Wang, “Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites” , Journal of Physics and Chemistry of Solids 69 (2008) 2396-2400. 21. J. H. Sun, S. Y. Dong, Y. K. Wang, S. P. Sun, “Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst” , Journal of Hazardous Materials 172 (2009) 1520-1526. 22. J. T. Tian, J. F. Wang, J. H. Dai, X. Wang, Y. S. Yin, “N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange” , Surface & Coatings Technology 204 (2009) 723-730 23. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, “Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes”, Journal of Hazardous Materials, 176 (2010) 807–813. 24. X. Zhou, T. Shi, H. Zhou, “Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation” , Applied Surface Science xxx (2012) xxx-xxx. 25. A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, “ One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity” Applied Catalysis B: Environmental, 91 (2009) 397–405. 26. C. H. Jheng, C. C. Yang, “The study on preparation and the characterization of nano-composite Ag/TiO2 photocalayst by sol-gel method”(2005)
摘要: 本論文研究目的為將氧化鋅擔持於奈米碳管載體表面,將其應用於光催化反應,觸媒製備變數包含不同煅燒溫度、碳管酸處理之變化、不同碳管管徑、不同奈米碳管添加比例、不同溶劑添加、不同前驅物濃度、不同超音波功率製備、不同超音波製備時間,觸媒活性則以石英玻璃反應器在50 ppm甲基橙水溶液250 ml於150分鐘紫外光照射下進行反應測試。光催化反應變因包含不同初濃度之甲基橙水溶液、不同波長光源及光降解甲基藍水溶液進行光催化反應。 實驗結果顯示,利用沉澱法製備觸媒,當煅燒溫度為400℃時觸媒可以提高甲基橙水溶液之轉化率,於氧化鋅中添加25%之奈米碳管之觸媒能夠有效提升觸媒的分散情況及反應活性,添加10-20 nm奈米碳管作為載體,提供高表面積,於150分鐘光催化反應,其轉化率可以達到90.1%。當以一百瓦之超音波功率頻率為40kHz控制製備時間為兩小時合成觸媒,可以降低粒子成長速率,降低氧化鋅之晶粒尺寸,其晶粒尺寸為24.5 nm。 以超音波功率為一百瓦頻率為40kHz製備時間兩小時之觸媒ZnO(75)/CNT(25),觸媒於進行光催化反應操作變因中,當波長為306 nm之光源進行光照反應,反應經90分鐘甲基橙轉化率可達到93%,速率常數值為商用觸媒之3.4倍,而針對甲基藍水溶液進行光反應為波長365nm,反應經過90分鐘甲基藍轉化率可達98.2%。
In this thesis, the purpose of this study is to prepare ZnO supported on carbon nanotubes(CNTs) and to apply it on photocatalytic reaction. The catalysts were tested by quartz glass reactor under the UV light illumination. The parameters of catalyst preparation include the temperature of calcination, acid-treatment of carbon nanotubes,diameter of CNTs,ratios of CNTs to ZnO, solvent, concentration of precursor solution, ultrasonic power and preparation time. Operating conditions in photocatalytic reaction included initial concentration of methyl orange solution, wavelength illumination and photodegradation of methylene blue. The results revealed that the catalyst prepared by precipitation method, and calcination of temperature at 400℃ enhanced the conversion of methyl orange solution. The amount of CNTs at 25% enhanced activity and dispersion of catalyst. Adding the 10-20 nm of CNTs for support can make catalyst obtain large surface. Under the UV light illumination, methyl orange solution converted 90.1%. The catalyst prepared by the ultrasonic power under 100W for 2 hours, the ZnO crystal size was about 24.5 nm. The catalyst of ZnO(75)/CNT(25) was used to proceed the photocatalytic reaction. Photodegradation of the methel orange solution under irradiation of UV light (306 nm), the conversion of methyl orange solution was 93% in 90 min, and the rate constant 3.4 times to commercial catalyst. Photodegradation of the methel blue solution under irradiation of UV light (365 nm), the conversion of methyl blue solution was 98.2% when reaction time in 90 min.
URI: http://hdl.handle.net/11455/3924
其他識別: U0005-2506201215404700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2506201215404700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.