Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3925
標題: 尺寸安定性陽極於填孔電鍍之應用
Application of Dimensionally Stable Anode for Via Filling Plating
作者: 王美齡
Wang, Mei-Ling
關鍵字: Dimensionally Stable Anode
尺寸安定性陽極
Via Filling
Through Silicon Via
填孔電鍍
矽通孔
出版社: 化學工程學系所
引用: 1. A. J. Bard and L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John-Woely & Sons Inc., New York, USA, 2001. 2. 胡啟章,“電化學原理與方法”,五南出版,2002。 3. M. Georgiadou, D. Veyret, R. L. Sani, and R. C. Alkire, “Simulation of Shape Evolution during Electrodeposition of Copper in the Presence of Additive”, J. Electrochem. Soc., 148, C54, 2001. 4. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 142, L87, 1995. 5. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition”, J. Electrochem. Soc., 152, C77, 2005. 6. G. M. Brown and G. A. Hope, “A SERS Study of SO42- / Cl- ion adsorption at a Copper Electrode In-Situ”, J. Electroanal. Chem., 405, 211, 1996. 7. D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, “Copper Ion Reduction Catalyzed by Chloride Ions”, J. Electroanal. Chem., 532, 353, 2002. 8. W. P. Dow and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method”, J. Electrochem. Soc., 153, C190, 2006. 9. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene Glycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku., 52, 218, 1984. 10. J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol I Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472, 1998. 11. Z. V. Feng, X. Li, and A. A. Gewirth, “Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study”, J. Phys. Chem. B, 107, 9415, 2003. 12. W. P. Dow, M. Y. Yen, W. B., Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia by Copper Electroplating”, J. Electrochem. Soc., 152, C769, 2005. 13. B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, T. L. Xiang, and G. N. Chen, “In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode”, J. Electrochem. Soc., 154, D516, 2007. 14. C. C. Hung, Y. L. Wang, W. H. Lee, and S. C. Chang, “Competitive Adsorption Between Bis(3-sodiumsulfopropyl disulfide) and Polyalkylene Glycols on Copper Electroplating”, J. Electrochem. Soc., 155, H669, 2008. 15. J. Mendez, R. Akolkar, and U. Landau, “Polyether Suppressors Enabling Copper Metallization of High Aspect Ratio Interconnects”, J. Electrochem. Soc., 156, D474, 2009. 16. S. C. Chang, J. M. Shieh, and K. C. Lin, “Wetting effect on gap filling submicron damascene by an electrolyte free of levelers” , J. Vac. Sci. Technol., 4, B20, 2002. 17. N. Zukauskaite and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrode in Situ”, Sov. Electrochem., 24, 1564, 1989. 18. J. P. Healy and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartII. The Instability of 4, 5- Dithiaoctane-1, 8-Disulphonic Acid in the Bath on Open Circuit”, J. Electroanaly. Chem., 338, 167, 1992. 19. E. Mattsson and J. O. M. Bockris, “Galvanostatic Studies of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System”, Trans. Faraday Soc., 55, 1586, 1959. 20. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride ion in Microvia Filling by Copper Electrodeposition - II. Studies Using EPR and Galvanostatic Measurements”, J. Electrochem. Soc., 152, C77, 2005. 21. J. J. Kelly and A. C. West, “Leveling of 200nm Features by organic additives”, Electrochem. Solid-State Lett., 2, C561, 1999 22. P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc., 148, C492, 2001 23. K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, “Copper damascene electrodeposition and additives”, J. Electrochem. Soc., 559, C137, 2003 24. L. Xu, Y. Xin, and J. Wang, “A comparative study on IrO2–Ta2O5 coated titanium electrodes prepared with different methods”, Electrochimi. Acta, 54 , 1820, 2009 25. S. Fierro, and C. Comninellis, “Kinetic study of formic acid oxidation on Ti/IrO2 electrodes prepared using the spin coating deposition technique”, Electrochimi. Acta, 55 , 7067, 2010 26. S. S. Kim and S. D. Kim, “Application of PVD coatings for developing a DSA-type anode”, Thin Solid Films, 516, 3673, 2008 27. C. Comninellis and G. P. Vercesi, “ Characterization of DSAR-type oxygen evolving electrodes: choice of a coating”, J. Appl. Electrochem., 21 ,335, 1991 28. H. Xiao, Introduction of Semiconductor Manufacturing Technology, Prentice-Hall Inc., New Jersey, 2001. 29. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. & Dev., 42, 567, 1998. 30. 汪建民,“材料分析”,中國材料科學學會,2001。 31. 羅吉宗,“薄膜科技與應用”,全華圖書,2005。 32. N. J. Harrick, “Internal Reflection Spectroscopy”, Wiley, New York, 1967. 33. 張立,“微結構分析與電子顯微鏡學”,材料與社會雜誌,第37期,79年. 34. 潘扶民,洪顯仁,林毓麟,郭裕銘,“ESCA, AES及SIMS表面分析技術”,材料與社會雜誌,第37期,民國79年. 35. A. de Oliveira-Sousa, M. A. S. de Silva, S. A. S. Machado, L. A. Avaca, and P. de Lima-Neto, “ Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes”, Electrochimi. Acta, 45, 4467, 2000 36. Y. Y. Hou, J. M. Hu, L. Liu, J. Q. Zhang, and C. N. Cao, “ Effect of calcinations temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions”, Electrochimi. Acta, 51, 6258, 2006 37. C. C. Chang, T. C. Wen, C. H. Yang, and Y. D. Juang, “ Influence of Calcination temperature of IrO2/Ti electrodes on oxygen redution”, Mater. Chem. Phys.,115, 93 2009 38. Z. S. Msindo, V. Sibanda, J. H. Potgieter, “Electrochemical and Physical characterization of lead- based anodes in comparison to Ti-(70%) IrO2 /(30%) Ta2O5 dimensionally stable anodes for using copper electrowinning”, J. Appl. Electrochem, 40, 691, 2010 39. 黃曉君,“電鍍銅光澤劑分析及其反應機構之研究”,國立雲林科技大學化學工程系碩士論文,94年 40. W. P. Dow, Y. D. Chiu, and M. Y. Yen, “ Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide”, J. Electrochem. Soc.,156, D155, 2009 41. 邱詠達,“利用分子自組裝方法進行鍍銅之光澤劑濃度分析”,國立中興大學化學工程系碩士論文,97年 42. 游瑞成,“有機光譜學”,科學圖書大庫,81年 43. J.Coates, “Interprtation of Infrared Spectra, A Practical Approach”, Encyclopedia of Analytical Chemistry , 2000 44. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben ,“Handbook of X-ray Photoelectron Spectroscopy”, 1992 45. I. Kusunoki, Y. Igari, S. Ishidzuka, T. Takami, T. Takaoka, M. Nishitani-Gamo, and T. Ando, “AFM and XPS studies of a homoepitaxial diamond(001) surface nitrided using 500-eV N2+ ion beam”, Diamond and Related Materials, 10, 1676, 2001 46. W. Huang, J. Dong, F. Li, and B. Chen, “Study of the tribological behavior of S-(carboxylpropyl)-N-dialkyl dithiocarbamic acid as additives in water-based fluid”, Wear, 252, 306, 2002 47. P. Wang, P. S. Yap, and T. T. Lim, “C–N–S tridoped TiO 2 for photocatalytic degradation of tetracycline under visible-light irradiation”, Applied Catalysis A: General, 399, 252, 2011 48. M. A. Affan, F. S. Wan, Z. Ngaini, M. Shamsuddin, “ Synthesis, Characterization and Biological Studies of Organotin(IV) Complexes of Thiosemicarbazone Ligand Derived From Pyruvic Acid: X-Ray Crystal Structure of [Me2Sn(PAT)] ”, Malaysian J. Analytical Science, 13, 63, 2009 49. M.Geyser and W. J. Mcgill, “ Thiuram-Accelerated Sulfur Vulcanization. I. The Formation of the Active Sulfurating Agent”, J. Appl. Polym. Sci., 60, 425, 1996 50. A. Frank and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries”, J. Electrochem. Soc., 150, C244, 2003 51. C. C. Hung, W. H. Lee, and S. Y. Hu, “ Effect of bis-3-sodiumsulfopropyl disulfide byproducts on copper defects after chemical mechanical polishing”, J. Vac. Sci. Technol. B, 26, 255, 2008 52. W. H. Lee, C. C. Hung, S. C. Chang, and Y. L. Wang, “ Bis-(3-sodiumsulfopropyl disulfide) Decomposition with Cathodic Current Flowing in a Copper-Electroplating Bath”, J. Electrochem. Soc., 157, H131, 2010 53. I. Volov and A. C. West, “Interaction between SPS and MPS in the Presence of Ferrous and Ferric Ions”, J. Electrochem. Soc., 158, D456, 2011 54. S. K. Cho, S. K. Kim, and J. J. Kim, “Superconformal Cu Electrodeposition Using AP4 A Substitutive Accelerator for Bis(3-sulfopropyl) Disulfide”, J. Electrochem. Soc., 5, C330, 2005 55. M. J. Willey, J. Reid, and A. C. West, “ Adsorption Kinetics of Polyvinylpyrrolidone during Copper Electrodeposition”, Electrochem. Solid-State Lett., 10, D38, 2007 56. T. P. Moffat, D. Wheeler, and D. Josell, “Electrodeposition of Copper in the SPS-PEG-Cl Additive System”, J. Electrochem. Soc., 151, C262, 2004
摘要: 本篇論文為了改善可溶性陽極在銅製程的缺失,將陽極系統更換為尺寸安定性陽極,作為研究的主軸,並針對不同材料的尺寸安定性陽極進行分析並對電鍍加速劑進行研究,如電化學分析、紫外光譜、紅外光譜以及化學分析能譜儀。實驗結果顯示,傳統搭配可溶性陽極使用的電鍍加速劑(如: 3-芣基丙烷磺酸鈉和聚二硫二丙烷磺酸鈉),在尺寸安定性陽極系統下進行短時間操作就會發生裂化的問題。本篇論文所研究的新穎添加劑在尺寸安定性陽極系統下具有強耐操性,不易被裂解,加速性強等優點,因此利用尺寸安定性陽極搭配此添加劑開發出適用在矽通孔的電鍍銅填孔配方。新穎添加劑搭配尺寸安定性陽極可達到好的填孔能力。除此之外,針對不同陽極材料:氧化銥、兩種市面上銷售的金屬氧化物修飾電極以及磷銅陽極利用電化學分析儀器、試驗槽電鍍以及填孔切片圖等比較填孔效益。
In order to solve these problems caused by soluble anodes, Dimensionally Stable Anode (DSA) was examined as a potential alternative. In this thesis, we analyzed different types of DSAs and developed specific plating additives for DSA. The results show that traditional accelerators, such as Sodium 3-Mercapto-1-Propanesulfonate (MPS) and Bis(3-Sulfopropyl) Disulfide (SPS), commonly used in the plating bath with soluble anodes, could not survive for a long time in the plating bath with DSAs. A specially formulated accelerator was able to stay active for a long time in the DSA system. With a compatible accelerator, the DSA was then used to carry out copper filling of through silicon via (TSV). A new copper plating formula was explored and evaluated for this process. Excellent filling performance could be obtained with this formula when employed simultaneously with the new accelerator and DSA in a plating bath. Afterwards, iridium dioxide and two modified DSAs were used to compare with a phosphorus-containing copper anode. Various DSAs and a new accelerator for TSV filling were evaluated and explored using electrochemical analysis instrument, practical plating, and examining cross-sections.
URI: http://hdl.handle.net/11455/3925
其他識別: U0005-2607201112305500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201112305500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.