Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3927
標題: 以鈦為光電極基材之染料敏化太陽能電池之研發
The Application of Titanium as Photoelectrode Substrate Utilizing in Dye Sensitized Solar Cells
作者: 蔡婷雅
Tsai, Ting-Ya
關鍵字: Dye-sensitized solar cells
染料敏化太陽能電池
hydrogen peroxide
titanium
雙氧水
鈦金屬
出版社: 化學工程學系所
引用: [1] M. A. Green, "Silicon solar cells: evolution, high-efficiency design and efficiency enhancements," Semiconductor Science and Technology, Vol. 8, pp. 1 (1993). [2] M. Gratzel, "Photoelectrochemical cells," Nature, Vol. 414, pp. 338-344 (2001). [3] B. O''Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, Vol. 353, pp. 737-740 (1991). [4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, "Conversion of light to electricity by cis-X2bis (2,2''-bipyridyl-4,4''-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, Vol. 115, pp. 6382-6390 (1993). [5] C. J. Barbe´, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grӓtzel "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications," Journal of the American Ceramic Society, Vol. 80, pp. 3157-3171 (1997). [6] A. Kay, M. Grӓtzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Solar Energy Materials and Solar Cells, Vol. 44, pp. 99-117(1996). [7] P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," Journal of the American Chemical Society, Vol. 123, pp. 1613-1624 (2001). [8] M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153 (2003). [9] 童永樑, "染料敏化太陽電池的現況與發展(下)," 工業材料, Vol. 285, pp. 146-149 (2010). [10] S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, "Flexible dye-sensitized solar cells by 28 GHz microwave irradiation," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 93–96 (2004). [11] M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles "Low-temperature fabrication of dye-sensitizedsolar cells by transfer of composite porous layers," nature materials, Vol. 4, pp. 607–611 (2005). [12] T. Miyasaka, Y. Kijitori, "Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers," Journal of The Electrochemical Society, Vol. 151, pp. A1767–A1773 (2004). [13] H. Meier, "Sensitization of electrical effects in solids," Journal of Physical Chemistry, Vol. 69, pp. 719-729 (1965). [14] R. Memming and H. Tributsch, "Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes," Journal of Physical Chemistry, Vol. 75, pp. 562-570 (1971). [15] G. P. Smestad, M. Grätzel, "Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter," Journal of Chemical Education, Vol. 75, pp. 752-756 (1998). [16] 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震, "不同的二氧化鈦電極結構應用於染料敏化太陽能電池之研究," 科儀新知, pp. 22-30 (2007). [17] D. Cahen, G. Hodes, M. Grӓtzel, J. F. Guillemoles, I. Riess, "Nature of Photovoltaic Action in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, Vol. 104, pp. 2053-2059 (2000). [18] K. Kalyanasundaram, M. Grätzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coordination Chemistry Reviews, Vol. 177, pp. 347-414 (1998). [19] N. G. Park, J. van de Lagemaat, and A. J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells," The Journal of Physical Chemistry B, Vol. 104, pp. 8989-8994 (2000). [20] 劉茂煌, "奈米光電池," 工業材料, Vol. 203, pp.91 (2003). [21] 許智偉、何文岳, "有機太陽能電池材料技術發展概況," 化工資訊與商情, Vol. 5, pp. 76-80 (2004). [22] S. Wang, Y. Li, C. Du, Z. Shi, S. Xiao, D. Zhu, E. Gao, S. Cai,, "Dye sensitization of nanocrystalline TiO2 by perylene derivatives," Synthetic Metals, Vol. 128, pp. 299-304 (2002). [23] A. Hagfeldt, B. Didrisksson, T. Palmqvist, H. Lindstrom, S. Sodergren, H. Rensmo, S. Lindquist "Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films," Solar Energy Materials and Solar Cells, Vol. 31, pp. 481-488 (1994). [24] G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 70, pp. 85-101 (2001). [25] A. Hagfeldt , M. Grätzel, "Molecular Photovoltaics," Accounts of Chemical Research, Vol. 33, pp. 269-277 (2000). [26] 鄭信忠、詹宗瑾、李勝揚、林哲堂、歐耿良, "經電化學處之鈦金屬表面奈米多孔性氧化層之研究," 中華牙誌, Vol. 25, pp. 96-102 (2006). [27] S. Hore, R. Kern "Implication of device functioning due to back reaction of electrons via the conducting glass substrate in dye sensitized solar cells," Applied Physics Letters, Vol. 87, p. 263504 (2005). [28] J. Xia, N. Masaki, K. Jiang, S. Yanagida, "Deposition of a Thin Film of TiOx from a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells," Journal of Physical Chemistry B, Vol. 2006, pp. 25222-25228 (2006). [29] A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, M. Grätzel, "The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating “Planar” Organic Dyes," Nano Letters, Vol. 8, pp. 977-981 (2008). [30] N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel, "Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films," Journal of the American Chemical Society, Vol. 110, pp. 1216-1220 (1988). [31] M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, K. J. Kim, "Flexible Metallic Substrates for TiO2 Film of Dye-sensitized Solar Cells," Chemistry Letters, Vol. 134, pp. 804-805 (2005). [32] K. Fan, T. Peng, B. Chai, J. Chen, K. Dai, "Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 55, pp. 5239-5244 (2010). [33] L. Chen, W. Tan, J. Zhang, X. Zhou, X. Zhang, Y. Lin, "Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 55, pp. 3721-3726 (2010). [34] S. Ito, N.L. Cevey Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, M. Grätzel, "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, Vol. 38, pp. 4004-4006 (2006). [35] L. Y. Lin, C. P. Lee, R. Vittal , K. C. Ho, "Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode," Journal of Power Sources, Vol. 195, pp. 4344-4349 (2010). [36] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, "Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 54, pp. 4467-4472 (2009). [37] D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, P. Schmuki, "Formation of a Non-Thickness-Limited Titanium Dioxide Mesosponge and its Use in Dye-Sensitized Solar Cells," Angewandte Chemie-International Edition, Vol. 48, pp. 9326-9329 (2009). [38] D. Kim, P. Roy, K. Lee, P. Schmuki, "Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment," Electrochemistry Communications, Vol. 12, pp. 574-578 (2010). [39] L. L. Li, C. Y. Tsai, .P. Wu, C. C. Chen, W. G. Diau, "Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, Vol. 20, pp. 2753-2758 (2010). [40] J. Van Roosmalen, E. Rilnberg, WO99/6652, (1999). [41] M. G. Kang, N.G. Park, K. S. Ryu, S. H Chang, K.J. Kim, "A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate," Solar Energy Materials and Solar Cells, Vol. 90, pp. 574-581 (2006). [42] J. H. Park, Y. Jun, H. G. Yun, S. Y. Lee, M. G. Kang, "Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate," Journal of The Electrochemical Society, Vol. 155, pp. F145-F149 (2008). [43] H. G. Yun, Y. Jun, J. Kim, B. S. Bae, M. G. Kang, "Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells," Applied Physics Letters, Vol. 93, pp. 133311 (2008). [44] Y. Jun, M. G. Kang, "The Characterization of Nanocrystalline Dye-Sensitized Solar Cells with Flexible Metal Substrates by Electrochemical Impedance Spectroscopy," Journal of The Electrochemical Society, Vol. 154, pp. B68-B71 (2007). [45] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, S. Yoshikawa, "The superiority of Ti plate as the substrate of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 91, pp. 1176-1181 (2007). [46] Y. Jun, J. Kim, M. G. Kang, "A study of stainless steel-based dye-sensitized solar cells and modules," Solar Energy Materials and Solar Cells, Vol. 91, pp. 779-784 (2007). [47] H. W. Chen, K. C. Huang, C. Y. Hsu, C. Y. Lin, J. G. Chen, C. P. Lee, L. Y. Lin, R.Vittal , K. C. Ho, "Electrophoretic deposition of TiO2 film on titanium foil for a flexible dye-sensitized solar cell," Electrochimica Acta, Vol. In Press, Corrected Proof. [48] J. M. Wu, S. Hayakawa, K. Tsuru, A. Osaka, "Porous titania films prepared from interactions of titanium with hydrogen peroxide solution," Scripta Materialia, Vol. 46, pp. 101-106 (2002). [49] P. Tengvall, H. Elwing, L. Sjöqvist, I. Lundström, L. M. Bjursten, "Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium," Biomaterials, Vol. 10, pp. 118-120 (1989). [50] P. Tengvall, I. Lundström, L. Sjöqvist, H. Elwing, and L. M. Bjursten, "Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants," Biomaterials, Vol. 10, pp. 166-175 (1989). [51] N. Papageorgiou, W. F. Maier, M. Grätzel, "An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media," The Electrochemical Society, Vol. 144, pp. 876-884 (1997). [52] T. C. Wei, C. C. Wan, Y. Y. Wang, C. M. Chen, H. S. Shiu, "Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium-Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells," Journal of Physical Chemistry C, Vol. 111, pp. 4847-4853 (2007). [53] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, "Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell," Journal of Electroanalytical Chemistry, Vol. 570, pp. 257-263 (2004). [54] A. Hauch, A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, Vol. 46, pp. 3457–3466 (2001). [55] S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, D. Y. Kim, "Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 51, pp. 3814–3819 (2006). [56] S. A. Sheppard, S. A. Campbell, J. R. Smith, G. W. Lloyd, T. R. Ralph, F. C. Walsh, "Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials," Analyst, Vol. 123, pp. 1923–1929 (1998). [57] C. M. Chen, C. H. Chen, T. C. Wei, "Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells," Electrochimica Acta, Vol. 55, pp. 1687–1695 (2010). [58] C. M. Chen, C. H. Chen, S. J. Cherng, T. C. Wei, "Electroless deposition of platinum on indium tin oxide glass as the counterelectrode for dye-sensitized solar cells," Materials Chemistry and Physics, Vol. 124, pp. 173–178 (2010). [59] R. Rosal , A. Rodrĺguez., M.S. Gonzalo, E. Gĺarca-Calvo, "Catalytic ozonation of naproxen and carbamazepine on titanium dioxide," Applied Catalysis B: Environmental, Vol. 84, pp. 48–57 (2008). [60] L.Y. Lin, C.P. Lee, R.Vittal, K.C. Ho, "Improving the durability of dye-sensitized solar cells through back illumination," Journal of Power Sources, Vol. 196, pp. 1671–1676 (2010). [61] Y. L. Lee , C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, C. F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, Vol. 196, pp. 1662–1665 (2010). [62] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, "Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, Vol. 106, pp. 10004-10010 (2002). [63] S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, "Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 90, pp. 2129-2140 (2006). [64] N. Kopidakis, N. R. Neale, K. Zhu, J. v. d. Lagemaat, A. J. Frank, "Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells," Applied Physics Letters, Vol. 87, p. 202106 (2005). [65] C. L. Olson, J. Nelson, M. S. Islam, "Defect Chemistry, Surface Structures, and Lithium Insertion in Anatase TiO2," The Journal of Physical Chemistry B, Vol. 110, pp. 9995-10001 (2006). [66] J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, and F. Honggang, "The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity," Journal of Physics and Chemistry of Solids, Vol. 64, pp. 615-623 (2003). [67] L. Han, N. Koide, Y. Chiba, and T. Mitate, "Modeling of an equivalent circuit for dye-sensitized solar cells," Applied Physics Letters, Vol. 84, pp. 2433-2435 (2004). [68] S. Lee, J. H. Noh, S. T. Bae, I. S. Cho, J. Y. Kim, H. Shin, J. K. Lee, H. S. Jung, and K. S. Hong, "Indium−Tin−Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices," The Journal of Physical Chemistry C, Vol. 113, pp. 7443-7447 (2009). [69] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, "Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:  Characterization by Intensity-Modulated Photocurrent Spectroscopy," The Journal of Physical Chemistry B, Vol. 101, pp. 10281-10289 (1997). [70] J. Bisquert, V. S. Vikhrenko, "Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, Vol. 108, pp. 2313-2322 (2004). [71] G. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, "Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy," The Journal of Physical Chemistry B, Vol. 101, pp. 8141-8155 (1997). [72] J. van de Lagemaat, N. G. Park, and A. J. Frank, "Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Electrical Impedance and Optical Modulation Techniques," The Journal of Physical Chemistry B, Vol. 104, pp. 2044-2052 (2000). [73] M. Wen, J. F. Gu, G. Liu, Z. B. Wang, and J. Lu, "Surface evolution of a gradient structured Ti in hydrogen peroxide solution," Applied Surface Science, Vol. 254, pp. 2905-2910 (2008). [74] X. X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, "Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution," Biomaterials, Vol. 23, pp. 1353-1357 (2002). [75] Y. J. Kim, Y. H. Lee, M. H. Lee, H. J. Kim, J. H. Pan, G. I. Lim, Y. S. Choi, K. Kim, N.-G. Park, C. Lee, and W. I. Lee, "Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2 Thin Film," Langmuir, Vol. 24, pp. 13225-13230 (2008). [76] B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, "ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 92, pp. 873-877 (2008). [77] B. K. Lee, J. J. Kim, "Enhanced efficiency of dye-sensitized solar cells by UV-O3 treatment of TiO2 layer," Current Applied Physics, Vol. 9, pp. 404-408 (2009).
摘要: 此研究以H2O2 (hydrogen peroxide)預處理後的鈦金屬片作為一個高效的鈦基材光電極以背向照光之染料敏化太陽能電池。利用H2O2在鈦基材上進行氧化/蝕刻反應,生成多孔網狀結構的氧化鈦薄膜,增加鈦金屬的表面積並作為光電極基材使用,此結構可增加網印的奈米TiO2顆粒與鈦金屬基材的接附面積。使用H2O2在鈦金屬基材所生成的氧化鈦薄膜層是直接生長在鈦金屬基材上,與基材有非常良好的接附性;且在表面所生成的多孔網狀結構的生長方向是近似垂直,可提供奈米TiO2顆粒到鈦金屬基材之間的電子轉移、注入和收集都有著明顯的改善,可以從電荷轉移阻抗(charge transfer resistance, R1)值降低和增加電子壽命(lifetime, τn)來證實。 未經任何處理的鈦金屬基材與經過H2O2氧化/蝕刻處理的鈦金屬基材光電極所組成染料敏化太陽能電池作比較,在AM1.5光源下以背向照光發現短路電流(short circuit current density, JSC )從8.55上升至16.43 mA/cm2,其光電轉換效率(energy conversion efficiency, η)從4.68上升至7.42% 。
In this study, titanium (Ti) was selected as photoanode substrate, and the H2O2 (hydrogen peroxide) pretreatment is performed on a Ti foil as an efficient photoanode substrate for DSSCs. The Ti surface was etched by the H2O2 solution, resulting in the formation of porous TiO2 nanostructure, which increase the contact area between screen-printed TiO2 nanoparticles and Ti substrate. Here, we introduce the H2O2 etching approach to form a robust and porous TiO2 nanostructures which directly formed on the Ti substrates, therefore the adherence was promoted. Moreover, the porous TiO2 nanostructures were vertically oriented to Ti substrate and provide electron transfer, injection, and collection from TiO2 nanoparticles to Ti substrate. Therefore it was improved by the reduced R1 resistance (charge transfer resistance) on the photoanode and the electron lifetime was prolong. Compared with DSSCs based on non-treated Ti photoanode, DSSCs with this H2O2 oxidation/etching Ti photoanode exhibits a remarkable increase in short-circuit current density (from 8.55 to 16.43 mA/cm2) as well as light- to- electricity conversion efficiency (from 4.68 to 7.42 %) under AM 1.5 back-side illumination.
URI: http://hdl.handle.net/11455/3927
其他識別: U0005-2707201114314800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201114314800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.